File size: 23,706 Bytes
db6a3b7
829dcd0
3057b36
7d475c1
bae3b7a
db6a3b7
cd41f5f
690b53e
db6a3b7
9880f3d
7d475c1
db6a3b7
f040f37
9880f3d
db6a3b7
 
9880f3d
db6a3b7
4aa90c9
db6a3b7
 
bd46f72
cd41f5f
d7b1815
 
cd41f5f
 
 
 
 
 
 
 
 
 
b7b00e2
db6a3b7
 
 
 
 
 
 
 
 
db894f7
cd41f5f
db6a3b7
 
b7b00e2
 
 
 
 
 
 
 
 
 
 
 
 
 
af2f852
19feb2e
 
 
 
 
 
 
 
 
 
 
 
 
af2f852
 
b7b00e2
 
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
9880f3d
 
cd41f5f
 
 
 
 
 
4aa90c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd41f5f
3057b36
cd41f5f
 
4aa90c9
be414fd
cd41f5f
 
 
 
 
b7b00e2
cd41f5f
6672d5c
db6a3b7
856fb1f
db6a3b7
 
856fb1f
 
be414fd
856fb1f
 
 
 
 
 
db6a3b7
 
bae3b7a
 
 
db6a3b7
cd41f5f
856fb1f
be414fd
856fb1f
93fbb1c
 
 
 
856fb1f
b7b00e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa90c9
93fbb1c
b7b00e2
829dcd0
b7b00e2
 
 
 
 
 
 
 
 
 
 
 
 
856fb1f
 
7d475c1
15fe7bc
 
4197679
856fb1f
b7b00e2
7d475c1
4197679
856fb1f
b7b00e2
cd41f5f
6672d5c
856fb1f
db6a3b7
 
b7b00e2
cd41f5f
 
 
 
 
 
db6a3b7
 
 
 
9880f3d
db6a3b7
 
 
 
 
 
cd41f5f
b7b00e2
690b53e
b7b00e2
db6a3b7
cd41f5f
db6a3b7
 
 
b7b00e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa90c9
 
 
 
 
 
 
 
 
ddc8146
9773cb0
 
 
be414fd
9773cb0
 
 
 
 
 
 
 
 
 
 
 
f0c50fc
 
9773cb0
f0c50fc
 
 
 
 
 
9773cb0
f0c50fc
 
ab26631
 
 
 
 
be414fd
ab26631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0c50fc
 
 
 
 
 
 
 
 
 
 
 
be414fd
af2f852
 
 
 
f391f90
 
 
 
 
9773cb0
b7b00e2
cd41f5f
7d475c1
 
ab26631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d475c1
 
db6a3b7
 
b7b00e2
 
 
 
 
 
 
 
 
 
bd46f72
af2f852
829dcd0
 
 
 
 
af2f852
 
 
f391f90
af2f852
 
f391f90
1fb27ce
af2f852
be414fd
bd46f72
 
 
 
 
690b53e
 
bd46f72
 
690b53e
 
b7b00e2
db6a3b7
bd46f72
 
 
 
 
 
b7b00e2
 
 
ab26631
 
 
 
af2f852
b7b00e2
 
 
db6a3b7
 
 
b7b00e2
db894f7
b7b00e2
 
6672d5c
b7b00e2
2e78ab8
db6a3b7
 
b7b00e2
db6a3b7
 
 
 
 
 
2e7f188
cd41f5f
db6a3b7
 
 
b7b00e2
 
 
 
4aa90c9
 
 
b7b00e2
 
 
db6a3b7
 
cd41f5f
 
 
b7b00e2
 
 
 
 
 
 
 
 
db6a3b7
 
 
cd41f5f
db6a3b7
af2f852
 
 
 
 
b7b00e2
19feb2e
b7b00e2
93fbb1c
af2f852
 
4aa90c9
af2f852
93fbb1c
af2f852
b7b00e2
db6a3b7
af2f852
db6a3b7
cd41f5f
 
 
 
db6a3b7
856fb1f
af2f852
856fb1f
 
 
6672d5c
db6a3b7
b7b00e2
 
db6a3b7
 
 
b7b00e2
 
db6a3b7
 
 
 
2e78ab8
db6a3b7
 
cd41f5f
db6a3b7
 
b7b00e2
 
 
 
 
 
 
 
 
db6a3b7
 
cd41f5f
db6a3b7
 
6672d5c
f0c50fc
 
 
 
af2f852
f0c50fc
 
 
 
 
 
 
 
 
 
 
 
 
ab26631
 
 
 
af2f852
ab26631
 
 
 
 
 
 
 
 
f0c50fc
af2f852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddc8146
db6a3b7
 
 
 
 
ed07608
 
 
 
 
c666caf
 
 
 
ed07608
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
import gradio as gr
from gradio.events import SelectData
import spaces
from gradio_litmodel3d import LitModel3D
import json
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from pathlib import Path 
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from collections.abc import Sequence


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)


def preprocess_image(image: Image.Image) -> Image.Image:
    """
    Preprocess the input image.

    Args:
        image (Image.Image): The input image.

    Returns:
        Image.Image: The preprocessed image.
    """
    processed_image = pipeline.preprocess_image(image)
    return processed_image


def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
    """
    Preprocess a list of input images.
    
    Args:
        images (List[Tuple[Image.Image, str]]): The input images.
        
    Returns:
        List[Image.Image]: The preprocessed images.
    """
    images = [image[0] for image in images]
    processed_images = [pipeline.preprocess_image(image) for image in images]
    return processed_images

def preprocess_upload_images(file_list: List[Any]) -> List[Tuple[Image.Image, str]]:
    images = []
    for f in file_list:
        if isinstance(f, dict):
            path = f.get("path") or f.get("name")
            filename = os.path.basename(path)
        else:                      # UploadedFile / FileData
            path = f.name
            filename = os.path.basename(path)

        img = Image.open(path).convert("RGBA").resize(
            (518, 518), Image.Resampling.LANCZOS
        )
        images.append((img, filename))
    return images


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed.
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed

def normalize_multiimages(multiimages: Sequence) -> List[Tuple[Image.Image, str]]:
    if not multiimages:
        return []

    if isinstance(multiimages[0], Image.Image):
        return [
            (pipeline.preprocess_image(img), f"gallery_{i}.png")
            for i, img in enumerate(multiimages)
        ]

    if isinstance(multiimages[0], tuple):
        return [
            (pipeline.preprocess_image(img), name)
            for img, name in multiimages
        ]

    return preprocess_upload_images(multiimages)


@spaces.GPU
def image_to_3d(
    image: Image.Image,
    multiimages: List[Any],
    is_multiimage: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    multiimage_algo: Literal["multidiffusion", "stochastic"],
    req: gr.Request,
) -> Tuple[dict, str]:
    """
    Convert an image (or multiple images) into a 3D model and return its state and video.

    Args:
        image (Image.Image): The input image for single-image mode.
        multiimages (List[Tuple[Image.Image, str]]): List of images with captions for multi-image mode.
        is_multiimage (str): Whether to use multi-image generation.
        seed (int): Random seed for reproducibility.
        ss_guidance_strength (float): Sparse structure guidance strength.
        ss_sampling_steps (int): Sparse structure sampling steps.
        slat_guidance_strength (float): SLAT guidance strength.
        slat_sampling_steps (int): SLAT sampling steps.
        multiimage_algo (str): Multi-image algorithm to use.

    Returns:
        dict: The information of the generated 3D model.
        str: The path to the video of the 3D model.

    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    is_multiimage = is_multiimage.lower() == "true"

    multiimages = normalize_multiimages(multiimages)
    print("[DEBUG] is_multiimage:", is_multiimage, "num_imgs:", len(multiimages))
    if is_multiimage and len(multiimages) == 0:
        is_multiimage = False
    # Run pipeline depending on mode
    if not is_multiimage:
        outputs = pipeline.run(
            image,
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=False,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
        )
    else:
        pil_images = [img for img, _ in multiimages]
        assert all(isinstance(im, Image.Image) for im in pil_images)
        outputs = pipeline.run_multi_image(
            pil_images,
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=False,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
            mode=multiimage_algo,
        )

    # Render the 3D video combining color and geometry
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]

    # Save the video
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)

    # Pack state for downstream use
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path



@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.

    Returns:
        str: The path to the extracted GLB file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    """
    Extract a Gaussian file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.

    Returns:
        str: The path to the extracted Gaussian file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


def prepare_multi_example() -> List[Image.Image]:
    multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
    images = []
    for case in multi_case:
        _images = []
        for i in range(1, 4):
            img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
            W, H = img.size
            img = img.resize((int(W / H * 512), 512))
            _images.append(np.array(img))
        images.append(Image.fromarray(np.concatenate(_images, axis=1)))
    return images


def split_image(image: Image.Image) -> List[Image.Image]:
    """
    Split an image into multiple views.
    """
    image = np.array(image)
    alpha = image[..., 3]
    alpha = np.any(alpha>0, axis=0)
    start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
    end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
    images = []
    for s, e in zip(start_pos, end_pos):
        images.append(Image.fromarray(image[:, s:e+1]))
    return [preprocess_image(image) for image in images]

def _example_to_multi(img: Image.Image):
    imgs = split_image(img)
    return imgs, imgs

def _files_to_gallery_and_state(file_list):
    tuples = preprocess_upload_images(file_list)
    gallery_imgs = [img for img, _ in tuples]
    return gallery_imgs, tuples

@spaces.GPU(api_name="quick_generate_glb")
def quick_generate_glb(
    image: Image.Image,
    multiimages: List[Tuple[Image.Image, str]],
    is_multiimage: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    multiimage_algo: Literal["multidiffusion", "stochastic"],
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    state, _ = image_to_3d(
        image=image,
        multiimages=multiimages,
        is_multiimage=is_multiimage,
        seed=seed,
        ss_guidance_strength=ss_guidance_strength,
        ss_sampling_steps=ss_sampling_steps,
        slat_guidance_strength=slat_guidance_strength,
        slat_sampling_steps=slat_sampling_steps,
        multiimage_algo=multiimage_algo,
        req=req
    )
    return extract_glb(state, mesh_simplify=mesh_simplify, texture_size=texture_size, req=req)


@spaces.GPU(api_name="quick_generate_gs")
def quick_generate_gs(
    image: Image.Image,
    multiimages: List[Tuple[Image.Image, str]],
    is_multiimage: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    multiimage_algo: Literal["multidiffusion", "stochastic"],
    req: gr.Request,
) -> Tuple[str, str]:
    state, _ = image_to_3d(
        image=image,
        multiimages=multiimages,
        is_multiimage=is_multiimage,
        seed=seed,
        ss_guidance_strength=ss_guidance_strength,
        ss_sampling_steps=ss_sampling_steps,
        slat_guidance_strength=slat_guidance_strength,
        slat_sampling_steps=slat_sampling_steps,
        multiimage_algo=multiimage_algo,
        req=req
    )
    return extract_gaussian(state, req=req)

def test_for_api_gen(image: Image.Image) -> Image.Image:
    """
    bilibili .

    Args:
        image (Image.Image): The input imagein hererererer.

    Returns:
        Image.Image: The preprocessed image no processs.
    """
    return image

def update_is_multiimage(event: gr.SelectData):
    return gr.update("true" if event.index == 1 else "false")

def toggle_multiimage_visibility(choice: str):
    show = choice.lower() == "true"
    return (
        gr.update(visible=show),   # uploaded_api_images
        gr.update(visible=show)    # multiimage_prompt  (Gallery)
    )


with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)

    Thanks to the incredible work of [JeffreyXiang/TRELLIS-image-large](https://huggingface.co/JeffreyXiang/TRELLIS-image-large) for providing such a stunning implementation of the TRELLIS 3D pipeline.

    During my usage, I noticed that many users had questions regarding API access. I've spent some time refactoring the `image_to_3d` pipeline and adding two new endpoints:

    - πŸ” `quick_generate_glb`: Directly generate and download a `.glb` 3D asset.
    - 🌐 `quick_generate_gs`: Directly generate and download the Gaussian `.ply` file.
    - 🧩 Both functions are exposed as Hugging Face API endpoints and can be called via `gradio_client` or any HTTP client.

    ### How to Use:
    - Upload an image and click **"Generate"** to create a 3D asset. If the image has an alpha channel, it will be used as a mask. Otherwise, `rembg` will automatically remove the background.
    - If you're satisfied with the result, click **"Extract GLB"** or **"Extract Gaussian"** to download the 3D file.

    ### Features:
    - βœ… Single-image and experimental multi-image generation
    - βœ… `.glb` extraction with mesh simplification and texturing
    - βœ… `.ply` (Gaussian) extraction
    - βœ… Public API endpoints for one-click asset generation and download

    Feel free to try it out and send feedback β€” I'm happy to keep improving it based on your suggestions!
    """)
    
    with gr.Row():
        with gr.Column():
            with gr.Tabs() as input_tabs:
                with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
                    image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
                with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
                    multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
                    gr.Markdown("""
                        Input different views of the object in separate images. 
                        
                        *NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
                    """)
            
            is_multiimage = gr.Textbox(value="false", visible=True, interactive=False, label="is_multiimage")

            input_tabs.select(
                fn=update_is_multiimage,
                outputs=is_multiimage
            )
            uploaded_api_images = gr.Files(file_types=["image"], label="Upload Images")
            multiimage_combined = gr.State()

            is_multiimage.change(                  
                fn=toggle_multiimage_visibility,
                inputs=is_multiimage,
                outputs=[uploaded_api_images, multiimage_prompt],
                trigger_mode="multiple"
            )
            
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")

            generate_btn = gr.Button("Generate")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            
            with gr.Row():
                quick_generate_glb_btn = gr.Button("Quick Generate GLB")
                quick_generate_gs_btn = gr.Button("Quick Generate Gaussian")

            gr.Markdown("""
                        *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
                        """)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
    
    output_buf = gr.State()

    # Example images at the bottom of the page
    with gr.Row() as single_image_example:
        examples = gr.Examples(
            examples=[
                f'assets/example_image/{image}'
                for image in os.listdir("assets/example_image")
            ],
            inputs=[image_prompt],
            fn=preprocess_image,
            outputs=[image_prompt],
            run_on_click=True,
            examples_per_page=64,
        )
    with gr.Row(visible=False) as multiimage_example:
        examples_multi = gr.Examples(
            examples=prepare_multi_example(),
            inputs=[image_prompt],
            fn=_example_to_multi,
            outputs=[multiimage_prompt,
                    multiimage_combined],
            run_on_click=True,
            examples_per_page=8,
        )

    # Handlers
    demo.load(start_session)
    demo.unload(end_session)
    
    single_image_input_tab.select(
        lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
        outputs=[is_multiimage, single_image_example, multiimage_example]
    )
    multiimage_input_tab.select(
        lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
        outputs=[is_multiimage, single_image_example, multiimage_example]
    )
    
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[image_prompt],
    )
    # multiimage_prompt.upload(
    #     preprocess_images,
    #     inputs=[multiimage_prompt],
    #     outputs=[multiimage_prompt],
    # )
    multiimage_prompt.upload(
        fn=lambda imgs: imgs,
        inputs=[multiimage_prompt],
        outputs=[multiimage_prompt, multiimage_combined],
    )
    uploaded_api_images.upload(
        fn=_files_to_gallery_and_state,
        inputs=[uploaded_api_images],
        outputs=[multiimage_prompt, multiimage_combined],
        preprocess=False,
    )


    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        image_to_3d,
        inputs=[
            image_prompt, multiimage_combined, is_multiimage, seed,
            ss_guidance_strength, ss_sampling_steps,
            slat_guidance_strength, slat_sampling_steps, multiimage_algo
        ],
        outputs=[output_buf, video_output],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    
    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )

    quick_generate_glb_btn.click(
        fn=quick_generate_glb,
        inputs=[
            image_prompt,
            multiimage_combined,
            is_multiimage,
            seed,
            ss_guidance_strength,
            ss_sampling_steps,
            slat_guidance_strength,
            slat_sampling_steps,
            multiimage_algo,
            mesh_simplify,
            texture_size,
        ],
        outputs=[model_output, download_glb],
    )

    quick_generate_gs_btn.click(
        fn=quick_generate_gs,
        inputs=[
            image_prompt,
            multiimage_combined,
            is_multiimage,
            seed,
            ss_guidance_strength,
            ss_sampling_steps,
            slat_guidance_strength,
            slat_sampling_steps,
            multiimage_algo,
        ],
        outputs=[model_output, download_gs],
    )
    generate_btn.click(
        fn=image_to_3d,
        inputs=[
            image_prompt,               # image: Image.Image
            multiimage_combined,        # multiimages: List[UploadedFile] or List[Tuple[Image, str]]
            is_multiimage,              # is_multiimage: str
            seed,
            ss_guidance_strength,
            ss_sampling_steps,
            slat_guidance_strength,
            slat_sampling_steps,
            multiimage_algo,
        ],
        outputs=[
            output_buf,
            video_output
        ]
    )

    

# Launch the Gradio app
if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    if torch.cuda.is_available():
        pipeline.cuda()
        print("CUDA is available. Using GPU.")
    else:
        print("CUDA not available. Falling back to CPU.")
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    except:
        pass
    print(f"CUDA Available: {torch.cuda.is_available()}")
    print(f"CUDA Version: {torch.version.cuda}")
    print(f"Number of GPUs: {torch.cuda.device_count()}")
    demo.launch(debug=True)