Spaces:
Running
on
Zero
Running
on
Zero
change ismultiimages logic and add file upload function
Browse files
app.py
CHANGED
@@ -22,55 +22,6 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
22 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
23 |
os.makedirs(TMP_DIR, exist_ok=True)
|
24 |
|
25 |
-
def to_pil_list(
|
26 |
-
multiimages: List[
|
27 |
-
Union[
|
28 |
-
Image.Image,
|
29 |
-
Tuple[Image.Image, str],
|
30 |
-
gr.File,
|
31 |
-
Tuple[gr.File, str],
|
32 |
-
str, # fallback: plain path
|
33 |
-
Path
|
34 |
-
]
|
35 |
-
]
|
36 |
-
) -> List[Image.Image]:
|
37 |
-
"""
|
38 |
-
Convert a heterogeneous `multiimages` list into a homogeneous
|
39 |
-
`List[Image.Image]`.
|
40 |
-
|
41 |
-
Accepts elements in any of the following forms:
|
42 |
-
• PIL.Image
|
43 |
-
• (PIL.Image, caption)
|
44 |
-
• gr.File (gr.File.name is the temp‑file path)
|
45 |
-
• (gr.File, caption)
|
46 |
-
• str / pathlib.Path (direct file path)
|
47 |
-
|
48 |
-
Returns:
|
49 |
-
List[Image.Image] -- guaranteed PIL images
|
50 |
-
"""
|
51 |
-
pil_imgs: List[Image.Image] = []
|
52 |
-
|
53 |
-
for item in multiimages:
|
54 |
-
# Unpack tuple/list, keep first element
|
55 |
-
if isinstance(item, (tuple, list)):
|
56 |
-
item = item[0]
|
57 |
-
|
58 |
-
if isinstance(item, Image.Image): # already PIL
|
59 |
-
pil_imgs.append(item)
|
60 |
-
|
61 |
-
elif hasattr(item, "name"): # gr.File
|
62 |
-
pil_imgs.append(Image.open(item.name))
|
63 |
-
|
64 |
-
elif isinstance(item, (str, Path)): # file path
|
65 |
-
pil_imgs.append(Image.open(item))
|
66 |
-
|
67 |
-
else:
|
68 |
-
raise TypeError(
|
69 |
-
f"Unsupported element in multiimages: {type(item)}"
|
70 |
-
)
|
71 |
-
|
72 |
-
return pil_imgs
|
73 |
-
|
74 |
def start_session(req: gr.Request):
|
75 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
76 |
os.makedirs(user_dir, exist_ok=True)
|
@@ -109,6 +60,16 @@ def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image
|
|
109 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
110 |
return processed_images
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
114 |
return {
|
@@ -160,7 +121,7 @@ def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
160 |
@spaces.GPU
|
161 |
def image_to_3d(
|
162 |
image: Image.Image,
|
163 |
-
multiimages: List[Tuple[Image.Image, str]],
|
164 |
is_multiimage: str,
|
165 |
seed: int,
|
166 |
ss_guidance_strength: float,
|
@@ -193,6 +154,9 @@ def image_to_3d(
|
|
193 |
os.makedirs(user_dir, exist_ok=True)
|
194 |
is_multiimage = is_multiimage.lower() == "true"
|
195 |
|
|
|
|
|
|
|
196 |
# Run pipeline depending on mode
|
197 |
if not is_multiimage:
|
198 |
outputs = pipeline.run(
|
@@ -210,7 +174,7 @@ def image_to_3d(
|
|
210 |
},
|
211 |
)
|
212 |
else:
|
213 |
-
pil_images =
|
214 |
outputs = pipeline.run_multi_image(
|
215 |
pil_images,
|
216 |
seed=seed,
|
@@ -386,8 +350,14 @@ def test_for_api_gen(image: Image.Image) -> Image.Image:
|
|
386 |
"""
|
387 |
return image
|
388 |
|
389 |
-
def update_is_multiimage(event: SelectData):
|
390 |
-
return "true" if event.index == 1 else "false"
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
|
393 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
@@ -428,17 +398,20 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
428 |
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
429 |
""")
|
430 |
|
431 |
-
is_multiimage = gr.
|
432 |
-
choices=["true", "false"],
|
433 |
-
value="false",
|
434 |
-
label="Use multi-image mode",
|
435 |
-
visible=True
|
436 |
-
)
|
437 |
|
438 |
input_tabs.select(
|
439 |
fn=update_is_multiimage,
|
440 |
outputs=is_multiimage
|
441 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
|
443 |
with gr.Accordion(label="Generation Settings", open=False):
|
444 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
@@ -466,7 +439,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
466 |
with gr.Row():
|
467 |
quick_generate_glb_btn = gr.Button("Quick Generate GLB")
|
468 |
quick_generate_gs_btn = gr.Button("Quick Generate Gaussian")
|
469 |
-
|
470 |
gr.Markdown("""
|
471 |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
472 |
""")
|
@@ -499,7 +472,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
499 |
examples=prepare_multi_example(),
|
500 |
inputs=[image_prompt],
|
501 |
fn=split_image,
|
502 |
-
outputs=[
|
503 |
run_on_click=True,
|
504 |
examples_per_page=8,
|
505 |
)
|
@@ -522,12 +495,24 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
522 |
inputs=[image_prompt],
|
523 |
outputs=[image_prompt],
|
524 |
)
|
|
|
|
|
|
|
|
|
|
|
525 |
multiimage_prompt.upload(
|
526 |
-
preprocess_images,
|
527 |
inputs=[multiimage_prompt],
|
528 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
)
|
530 |
|
|
|
531 |
generate_btn.click(
|
532 |
get_seed,
|
533 |
inputs=[randomize_seed, seed],
|
@@ -535,7 +520,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
535 |
).then(
|
536 |
image_to_3d,
|
537 |
inputs=[
|
538 |
-
image_prompt,
|
539 |
ss_guidance_strength, ss_sampling_steps,
|
540 |
slat_guidance_strength, slat_sampling_steps, multiimage_algo
|
541 |
],
|
@@ -577,7 +562,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
577 |
fn=quick_generate_glb,
|
578 |
inputs=[
|
579 |
image_prompt,
|
580 |
-
|
581 |
is_multiimage,
|
582 |
seed,
|
583 |
ss_guidance_strength,
|
@@ -595,7 +580,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
595 |
fn=quick_generate_gs,
|
596 |
inputs=[
|
597 |
image_prompt,
|
598 |
-
|
599 |
is_multiimage,
|
600 |
seed,
|
601 |
ss_guidance_strength,
|
@@ -606,6 +591,24 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
606 |
],
|
607 |
outputs=[model_output, download_gs],
|
608 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
609 |
|
610 |
|
611 |
|
|
|
22 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
23 |
os.makedirs(TMP_DIR, exist_ok=True)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def start_session(req: gr.Request):
|
26 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
27 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
60 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
61 |
return processed_images
|
62 |
|
63 |
+
def preprocess_upload_images(file_list: List[Any]) -> List[Tuple[Image.Image, str]]:
|
64 |
+
"""
|
65 |
+
Resize all input images to 518x518 and return (image, filename) pairs.
|
66 |
+
"""
|
67 |
+
images = [
|
68 |
+
(Image.open(f.name).convert("RGBA").resize((518, 518), Image.Resampling.LANCZOS), f.name)
|
69 |
+
for f in file_list
|
70 |
+
]
|
71 |
+
return images
|
72 |
+
|
73 |
|
74 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
75 |
return {
|
|
|
121 |
@spaces.GPU
|
122 |
def image_to_3d(
|
123 |
image: Image.Image,
|
124 |
+
multiimages: Union[List[Tuple[Image.Image, str]], List[Any]],
|
125 |
is_multiimage: str,
|
126 |
seed: int,
|
127 |
ss_guidance_strength: float,
|
|
|
154 |
os.makedirs(user_dir, exist_ok=True)
|
155 |
is_multiimage = is_multiimage.lower() == "true"
|
156 |
|
157 |
+
if multiimages and not isinstance(multiimages[0], tuple):
|
158 |
+
multiimages = preprocess_upload_images(multiimages)
|
159 |
+
|
160 |
# Run pipeline depending on mode
|
161 |
if not is_multiimage:
|
162 |
outputs = pipeline.run(
|
|
|
174 |
},
|
175 |
)
|
176 |
else:
|
177 |
+
pil_images = [d[0] for d in multiimages]
|
178 |
outputs = pipeline.run_multi_image(
|
179 |
pil_images,
|
180 |
seed=seed,
|
|
|
350 |
"""
|
351 |
return image
|
352 |
|
353 |
+
def update_is_multiimage(event: gr.SelectData):
|
354 |
+
return gr.update("true" if event.index == 1 else "false")
|
355 |
+
|
356 |
+
def toggle_multiimage_visibility(choice: str):
|
357 |
+
if choice == "true":
|
358 |
+
return gr.update(visible=True), gr.update(visible=False)
|
359 |
+
else:
|
360 |
+
return gr.update(visible=False), gr.update(visible=False)
|
361 |
|
362 |
|
363 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
|
398 |
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
399 |
""")
|
400 |
|
401 |
+
is_multiimage = gr.Textbox(value="false", visible=True, interactive=False, label="is_multiimage")
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
input_tabs.select(
|
404 |
fn=update_is_multiimage,
|
405 |
outputs=is_multiimage
|
406 |
)
|
407 |
+
uploaded_api_images = gr.Files(file_types=["image"], label="Upload Images")
|
408 |
+
multiimage_combined = gr.State()
|
409 |
+
|
410 |
+
is_multiimage.change(
|
411 |
+
fn=toggle_multiimage_visibility,
|
412 |
+
inputs=is_multiimage,
|
413 |
+
outputs=[uploaded_api_images, multiimage_prompt]
|
414 |
+
)
|
415 |
|
416 |
with gr.Accordion(label="Generation Settings", open=False):
|
417 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
|
|
439 |
with gr.Row():
|
440 |
quick_generate_glb_btn = gr.Button("Quick Generate GLB")
|
441 |
quick_generate_gs_btn = gr.Button("Quick Generate Gaussian")
|
442 |
+
|
443 |
gr.Markdown("""
|
444 |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
445 |
""")
|
|
|
472 |
examples=prepare_multi_example(),
|
473 |
inputs=[image_prompt],
|
474 |
fn=split_image,
|
475 |
+
outputs=[multiimage_combined],
|
476 |
run_on_click=True,
|
477 |
examples_per_page=8,
|
478 |
)
|
|
|
495 |
inputs=[image_prompt],
|
496 |
outputs=[image_prompt],
|
497 |
)
|
498 |
+
# multiimage_prompt.upload(
|
499 |
+
# preprocess_images,
|
500 |
+
# inputs=[multiimage_prompt],
|
501 |
+
# outputs=[multiimage_prompt],
|
502 |
+
# )
|
503 |
multiimage_prompt.upload(
|
504 |
+
fn=preprocess_images,
|
505 |
inputs=[multiimage_prompt],
|
506 |
+
outputs=[multiimage_combined],
|
507 |
+
)
|
508 |
+
uploaded_api_images.upload(
|
509 |
+
fn=preprocess_upload_images,
|
510 |
+
inputs=[uploaded_api_images],
|
511 |
+
outputs=[multiimage_combined],
|
512 |
+
preprocess=False,
|
513 |
)
|
514 |
|
515 |
+
|
516 |
generate_btn.click(
|
517 |
get_seed,
|
518 |
inputs=[randomize_seed, seed],
|
|
|
520 |
).then(
|
521 |
image_to_3d,
|
522 |
inputs=[
|
523 |
+
image_prompt, multiimage_combined, is_multiimage, seed,
|
524 |
ss_guidance_strength, ss_sampling_steps,
|
525 |
slat_guidance_strength, slat_sampling_steps, multiimage_algo
|
526 |
],
|
|
|
562 |
fn=quick_generate_glb,
|
563 |
inputs=[
|
564 |
image_prompt,
|
565 |
+
multiimage_combined,
|
566 |
is_multiimage,
|
567 |
seed,
|
568 |
ss_guidance_strength,
|
|
|
580 |
fn=quick_generate_gs,
|
581 |
inputs=[
|
582 |
image_prompt,
|
583 |
+
multiimage_combined,
|
584 |
is_multiimage,
|
585 |
seed,
|
586 |
ss_guidance_strength,
|
|
|
591 |
],
|
592 |
outputs=[model_output, download_gs],
|
593 |
)
|
594 |
+
generate_btn.click(
|
595 |
+
fn=image_to_3d,
|
596 |
+
inputs=[
|
597 |
+
image_prompt, # image: Image.Image
|
598 |
+
multiimage_combined, # multiimages: List[UploadedFile] or List[Tuple[Image, str]]
|
599 |
+
is_multiimage, # is_multiimage: str
|
600 |
+
seed,
|
601 |
+
ss_guidance_strength,
|
602 |
+
ss_sampling_steps,
|
603 |
+
slat_guidance_strength,
|
604 |
+
slat_sampling_steps,
|
605 |
+
multiimage_algo,
|
606 |
+
],
|
607 |
+
outputs=[
|
608 |
+
output_buf,
|
609 |
+
video_output
|
610 |
+
]
|
611 |
+
)
|
612 |
|
613 |
|
614 |
|