Spaces:
Running
on
Zero
Running
on
Zero
fix
Browse files
app.py
CHANGED
@@ -265,7 +265,7 @@ def split_image(image: Image.Image) -> List[Image.Image]:
|
|
265 |
images.append(Image.fromarray(image[:, s:e+1]))
|
266 |
return [preprocess_image(image) for image in images]
|
267 |
|
268 |
-
@spaces.GPU
|
269 |
def quick_generate_glb(
|
270 |
image: Image.Image,
|
271 |
multiimages: List[Tuple[Image.Image, str]],
|
@@ -341,7 +341,8 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
341 |
with gr.Row():
|
342 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
343 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
344 |
-
generate_glb_btn = gr.Button("Quick Generate GLB")
|
|
|
345 |
gr.Markdown("""
|
346 |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
347 |
""")
|
@@ -472,6 +473,28 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
472 |
lambda: gr.update(interactive=True),
|
473 |
outputs=[download_glb]
|
474 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
|
476 |
|
477 |
# Launch the Gradio app
|
@@ -482,4 +505,4 @@ if __name__ == "__main__":
|
|
482 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
483 |
except:
|
484 |
pass
|
485 |
-
demo.launch(show_error=True)
|
|
|
265 |
images.append(Image.fromarray(image[:, s:e+1]))
|
266 |
return [preprocess_image(image) for image in images]
|
267 |
|
268 |
+
@spaces.GPU(api_name="quick_generate_glb")
|
269 |
def quick_generate_glb(
|
270 |
image: Image.Image,
|
271 |
multiimages: List[Tuple[Image.Image, str]],
|
|
|
341 |
with gr.Row():
|
342 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
343 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
344 |
+
generate_glb_btn = gr.Button("Quick Generate GLB in layout")
|
345 |
+
quick_generate_glb_btn = gr.Button("Quick Generate GLB with download")
|
346 |
gr.Markdown("""
|
347 |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
348 |
""")
|
|
|
473 |
lambda: gr.update(interactive=True),
|
474 |
outputs=[download_glb]
|
475 |
)
|
476 |
+
|
477 |
+
quick_generate_glb_btn.click(
|
478 |
+
fn=quick_generate_glb,
|
479 |
+
inputs=[
|
480 |
+
image_input,
|
481 |
+
gr.State([]), # multiimages
|
482 |
+
gr.State(False), # is_multiimage
|
483 |
+
gr.State(0), # seed
|
484 |
+
gr.State(7.5), # ss_guidance_strength
|
485 |
+
gr.State(12), # ss_sampling_steps
|
486 |
+
gr.State(3.0), # slat_guidance_strength
|
487 |
+
gr.State(12), # slat_sampling_steps
|
488 |
+
gr.State("stochastic"), # multiimage_algo
|
489 |
+
gr.State(0.95), # mesh_simplify
|
490 |
+
gr.State(1024), # texture_size
|
491 |
+
],
|
492 |
+
outputs=[model_output, glb_download],
|
493 |
+
api_name="quick_generate_glb"
|
494 |
+
)
|
495 |
+
|
496 |
+
|
497 |
+
|
498 |
|
499 |
|
500 |
# Launch the Gradio app
|
|
|
505 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
506 |
except:
|
507 |
pass
|
508 |
+
demo.launch(show_error=True,show_api=True)
|