File size: 10,207 Bytes
a754546
af4ff35
aff6746
4e09a41
af4ff35
89fac21
4e09a41
 
 
 
 
 
 
 
aff6746
820ab2f
af4ff35
820ab2f
af4ff35
820ab2f
af4ff35
aff6746
 
1550706
aff6746
af4ff35
 
 
 
aff6746
 
af4ff35
905ed31
af4ff35
905ed31
7115c2e
af4ff35
89fac21
4e09a41
 
89fac21
 
905ed31
7115c2e
 
 
 
 
 
905ed31
 
 
 
89fac21
7115c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
af4ff35
89fac21
 
905ed31
89fac21
905ed31
 
 
89fac21
 
4e09a41
7115c2e
b19598b
01e4e5c
 
 
7115c2e
d41eee2
01e4e5c
 
 
 
 
7115c2e
 
 
 
 
 
 
01e4e5c
d41eee2
 
 
 
 
 
 
 
 
 
 
01e4e5c
 
 
d41eee2
 
 
 
01e4e5c
7115c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01e4e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7115c2e
 
d41eee2
b066284
 
 
01e4e5c
 
 
1550706
aff6746
 
 
 
 
 
 
 
905ed31
 
 
01e4e5c
aff6746
 
905ed31
 
 
 
 
 
 
01e4e5c
 
aff6746
 
4e09a41
aff6746
7115c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff6746
 
2b32a02
aff6746
 
 
2b32a02
aff6746
 
 
 
 
 
 
 
905ed31
01e4e5c
aff6746
 
 
c155fa9
 
 
aff6746
 
7115c2e
aff6746
 
7115c2e
c155fa9
 
aff6746
 
 
 
 
 
 
 
 
 
 
 
 
af4ff35
aff6746
01e4e5c
aff6746
 
 
 
 
01e4e5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import spaces
import jiwer
import numpy as np
import re
import gradio as gr

def split_into_sentences(text):
    """
    Simple sentence tokenizer using regular expressions.
    Splits text into sentences based on punctuation.
    """
    sentences = re.split(r'(?<=[.!?])\s*', text)
    sentences = [s.strip() for s in sentences if s.strip()]
    return sentences

@spaces.GPU()
def calculate_wer(reference, hypothesis):
    """
    Calculate the Word Error Rate (WER) using jiwer.
    """
    wer = jiwer.wer(reference, hypothesis)
    return wer

@spaces.GPU()
def calculate_cer(reference, hypothesis):
    """
    Calculate the Character Error Rate (CER) using jiwer.
    """
    cer = jiwer.cer(reference, hypothesis)
    return cer

@spaces.GPU()
def calculate_sentence_metrics(reference, hypothesis):
    """
    Calculate WER and CER for each sentence and overall statistics.
    Handles cases where the number of sentences differ.
    """
    try:
        reference_sentences = split_into_sentences(reference)
        hypothesis_sentences = split_into_sentences(hypothesis)

        sentence_wers = []
        sentence_cers = []
        min_length = min(len(reference_sentences), len(hypothesis_sentences))

        for i in range(min_length):
            ref = reference_sentences[i]
            hyp = hypothesis_sentences[i]

            wer = jiwer.wer(ref, hyp)
            cer = jiwer.cer(ref, hyp)
            sentence_wers.append(wer)
            sentence_cers.append(cer)

        # Calculate overall statistics
        if sentence_wers:
            average_wer = np.mean(sentence_wers)
            std_dev_wer = np.std(sentence_wers)
        else:
            average_wer = 0.0
            std_dev_wer = 0.0

        if sentence_cers:
            average_cer = np.mean(sentence_cers)
            std_dev_cer = np.std(sentence_cers)
        else:
            average_cer = 0.0
            std_dev_cer = 0.0

        return {
            "sentence_wers": sentence_wers,
            "sentence_cers": sentence_cers,
            "average_wer": average_wer,
            "average_cer": average_cer,
            "std_dev_wer": std_dev_wer,
            "std_dev_cer": std_dev_cer
        }
    except Exception as e:
        raise e

        
def identify_misaligned_sentences(reference_text, hypothesis_text):
    """
    Identify sentences that don't match between reference and hypothesis.
    Handles cases where the number of sentences differ.
    Returns a dictionary with misaligned sentence pairs, their indices, and misalignment details.
    """
    reference_sentences = split_into_sentences(reference_text)
    hypothesis_sentences = split_into_sentences(hypothesis_text)

    misaligned = []
    min_length = min(len(reference_sentences), len(hypothesis_sentences))

    # Compare sentences up to the minimum length
    for i in range(min_length):
        ref = reference_sentences[i]
        hyp = hypothesis_sentences[i]

        if ref != hyp:
            # Find the first position where the sentences diverge
            min_len = min(len(ref), len(hyp))
            misalignment_start = 0
            for j in range(min_len):
                if ref[j] != hyp[j]:
                    misalignment_start = j
                    break
            # Prepare the context for display
            context_ref = ref[:misalignment_start] + f"**{ref[misalignment_start:]}**"
            context_hyp = hyp[:misalignment_start] + f"**{hyp[misalignment_start:]}**"

            misaligned.append({
                "index": i+1,
                "reference": ref,
                "hypothesis": hyp,
                "misalignment_start": misalignment_start,
                "context_ref": context_ref,
                "context_hyp": context_hyp
            })

    # Note any extra sentences as misaligned
    if len(reference_sentences) > len(hypothesis_sentences):
        for i in range(min_length, len(reference_sentences)):
            misaligned.append({
                "index": i+1,
                "reference": reference_sentences[i],
                "hypothesis": "No corresponding sentence",
                "misalignment_start": 0,
                "context_ref": reference_sentences[i],
                "context_hyp": "No corresponding sentence"
            })
    elif len(hypothesis_sentences) > len(reference_sentences):
        for i in range(min_length, len(hypothesis_sentences)):
            misaligned.append({
                "index": i+1,
                "reference": "No corresponding sentence",
                "hypothesis": hypothesis_sentences[i],
                "misalignment_start": 0,
                "context_ref": "No corresponding sentence",
                "context_hyp": hypothesis_sentences[i]
            })

    return misaligned

def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_cer, std_dev_wer, std_dev_cer, misaligned_sentences):
    md = "### Sentence-level Metrics\n\n"
    md += "#### Word Error Rate (WER)\n"
    md += f"* Average WER: {average_wer:.2f}\n"
    md += f"* Standard Deviation: {std_dev_wer:.2f}\n\n"
    md += "#### Character Error Rate (CER)\n"
    md += f"* Average CER: {average_cer:.2f}\n"
    md += f"* Standard Deviation: {std_dev_cer:.2f}\n\n"

    md += "### WER for Each Sentence\n\n"
    for i, wer in enumerate(sentence_wers):
        md += f"* Sentence {i+1}: {wer:.2f}\n"

    md += "\n### CER for Each Sentence\n\n"
    for i, cer in enumerate(sentence_cers):
        md += f"* Sentence {i+1}: {cer:.2f}\n"

    if misaligned_sentences:
        md += "\n### Misaligned Sentences\n\n"
        for misaligned in misaligned_sentences:
            md += f"#### Sentence {misaligned['index']}\n"
            md += f"* Reference: {misaligned['context_ref']}\n"
            md += f"* Hypothesis: {misaligned['context_hyp']}\n"
            md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
    else:
        md += "\n### Misaligned Sentences\n\n"
        md += "* No misaligned sentences found."

    return md

@spaces.GPU()
def process_files(reference_file, hypothesis_file):
    try:
        with open(reference_file.name, 'r') as f:
            reference_text = f.read()

        with open(hypothesis_file.name, 'r') as f:
            hypothesis_text = f.read()

        overall_wer = calculate_wer(reference_text, hypothesis_text)
        overall_cer = calculate_cer(reference_text, hypothesis_text)
        sentence_metrics = calculate_sentence_metrics(reference_text, hypothesis_text)
        misaligned = identify_misaligned_sentences(reference_text, hypothesis_text)

        return {
            "Overall WER": overall_wer,
            "Overall CER": overall_cer,
            "Sentence WERs": sentence_metrics["sentence_wers"],
            "Sentence CERs": sentence_metrics["sentence_cers"],
            "Average WER": sentence_metrics["average_wer"],
            "Average CER": sentence_metrics["average_cer"],
            "Standard Deviation WER": sentence_metrics["std_dev_wer"],
            "Standard Deviation CER": sentence_metrics["std_dev_cer"],
            "Misaligned Sentences": misaligned
        }
    except Exception as e:
        return {"error": str(e)}

def process_and_display(ref_file, hyp_file):
    result = process_files(ref_file, hyp_file)

    if "error" in result:
        error_msg = result["error"]
        return {"error": error_msg}, "", ""

    metrics = {
        "Overall WER": result["Overall WER"],
        "Overall CER": result["Overall CER"]
    }

    metrics_md = format_sentence_metrics(
        result["Sentence WERs"],
        result["Sentence CERs"],
        result["Average WER"],
        result["Average CER"],
        result["Standard Deviation WER"],
        result["Standard Deviation CER"],
        result["Misaligned Sentences"]
    )

    misaligned_md = "### Misaligned Sentences\n\n"
    if result["Misaligned Sentences"]:
        for misaligned in result["Misaligned Sentences"]:
            misaligned_md += f"#### Sentence {misaligned['index']}\n"
            misaligned_md += f"* Reference: {misaligned['context_ref']}\n"
            misaligned_md += f"* Hypothesis: {misaligned['context_hyp']}\n"
            misaligned_md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
    else:
        misaligned_md += "* No misaligned sentences found."

    return metrics, metrics_md, misaligned_md


def main():
    with gr.Blocks() as demo:
        gr.Markdown("# ASR Metrics")

        with gr.Row():
            reference_file = gr.File(label="Upload Reference File")
            hypothesis_file = gr.File(label="Upload Model Output File")

        with gr.Row():
            reference_preview = gr.Textbox(label="Reference Preview", lines=3)
            hypothesis_preview = gr.Textbox(label="Hypothesis Preview", lines=3)

        with gr.Row():
            compute_button = gr.Button("Compute Metrics")
            results_output = gr.JSON(label="Results")
            metrics_output = gr.Markdown(label="Sentence Metrics")
            misaligned_output = gr.Markdown(label="Misaligned Sentences")

        # Update previews when files are uploaded
        def update_previews(ref_file, hyp_file):
            ref_text = ""
            hyp_text = ""

            if ref_file:
                with open(ref_file.name, 'r') as f:
                    ref_text = f.read()[:200]
            if hyp_file:
                with open(hyp_file.name, 'r') as f:
                    hyp_text = f.read()[:200]

            return ref_text, hyp_text

        reference_file.change(
            fn=update_previews,
            inputs=[reference_file, hypothesis_file],
            outputs=[reference_preview, hypothesis_preview]
        )
        hypothesis_file.change(
            fn=update_previews,
            inputs=[reference_file, hypothesis_file],
            outputs=[reference_preview, hypothesis_preview]
        )

        compute_button.click(
            fn=process_and_display,
            inputs=[reference_file, hypothesis_file],
            outputs=[results_output, metrics_output, misaligned_output]
        )

    demo.launch()

if __name__ == "__main__":
    main()