Spaces:
Sleeping
Sleeping
File size: 10,207 Bytes
a754546 af4ff35 aff6746 4e09a41 af4ff35 89fac21 4e09a41 aff6746 820ab2f af4ff35 820ab2f af4ff35 820ab2f af4ff35 aff6746 1550706 aff6746 af4ff35 aff6746 af4ff35 905ed31 af4ff35 905ed31 7115c2e af4ff35 89fac21 4e09a41 89fac21 905ed31 7115c2e 905ed31 89fac21 7115c2e af4ff35 89fac21 905ed31 89fac21 905ed31 89fac21 4e09a41 7115c2e b19598b 01e4e5c 7115c2e d41eee2 01e4e5c 7115c2e 01e4e5c d41eee2 01e4e5c d41eee2 01e4e5c 7115c2e 01e4e5c 7115c2e d41eee2 b066284 01e4e5c 1550706 aff6746 905ed31 01e4e5c aff6746 905ed31 01e4e5c aff6746 4e09a41 aff6746 7115c2e aff6746 2b32a02 aff6746 2b32a02 aff6746 905ed31 01e4e5c aff6746 c155fa9 aff6746 7115c2e aff6746 7115c2e c155fa9 aff6746 af4ff35 aff6746 01e4e5c aff6746 01e4e5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import spaces
import jiwer
import numpy as np
import re
import gradio as gr
def split_into_sentences(text):
"""
Simple sentence tokenizer using regular expressions.
Splits text into sentences based on punctuation.
"""
sentences = re.split(r'(?<=[.!?])\s*', text)
sentences = [s.strip() for s in sentences if s.strip()]
return sentences
@spaces.GPU()
def calculate_wer(reference, hypothesis):
"""
Calculate the Word Error Rate (WER) using jiwer.
"""
wer = jiwer.wer(reference, hypothesis)
return wer
@spaces.GPU()
def calculate_cer(reference, hypothesis):
"""
Calculate the Character Error Rate (CER) using jiwer.
"""
cer = jiwer.cer(reference, hypothesis)
return cer
@spaces.GPU()
def calculate_sentence_metrics(reference, hypothesis):
"""
Calculate WER and CER for each sentence and overall statistics.
Handles cases where the number of sentences differ.
"""
try:
reference_sentences = split_into_sentences(reference)
hypothesis_sentences = split_into_sentences(hypothesis)
sentence_wers = []
sentence_cers = []
min_length = min(len(reference_sentences), len(hypothesis_sentences))
for i in range(min_length):
ref = reference_sentences[i]
hyp = hypothesis_sentences[i]
wer = jiwer.wer(ref, hyp)
cer = jiwer.cer(ref, hyp)
sentence_wers.append(wer)
sentence_cers.append(cer)
# Calculate overall statistics
if sentence_wers:
average_wer = np.mean(sentence_wers)
std_dev_wer = np.std(sentence_wers)
else:
average_wer = 0.0
std_dev_wer = 0.0
if sentence_cers:
average_cer = np.mean(sentence_cers)
std_dev_cer = np.std(sentence_cers)
else:
average_cer = 0.0
std_dev_cer = 0.0
return {
"sentence_wers": sentence_wers,
"sentence_cers": sentence_cers,
"average_wer": average_wer,
"average_cer": average_cer,
"std_dev_wer": std_dev_wer,
"std_dev_cer": std_dev_cer
}
except Exception as e:
raise e
def identify_misaligned_sentences(reference_text, hypothesis_text):
"""
Identify sentences that don't match between reference and hypothesis.
Handles cases where the number of sentences differ.
Returns a dictionary with misaligned sentence pairs, their indices, and misalignment details.
"""
reference_sentences = split_into_sentences(reference_text)
hypothesis_sentences = split_into_sentences(hypothesis_text)
misaligned = []
min_length = min(len(reference_sentences), len(hypothesis_sentences))
# Compare sentences up to the minimum length
for i in range(min_length):
ref = reference_sentences[i]
hyp = hypothesis_sentences[i]
if ref != hyp:
# Find the first position where the sentences diverge
min_len = min(len(ref), len(hyp))
misalignment_start = 0
for j in range(min_len):
if ref[j] != hyp[j]:
misalignment_start = j
break
# Prepare the context for display
context_ref = ref[:misalignment_start] + f"**{ref[misalignment_start:]}**"
context_hyp = hyp[:misalignment_start] + f"**{hyp[misalignment_start:]}**"
misaligned.append({
"index": i+1,
"reference": ref,
"hypothesis": hyp,
"misalignment_start": misalignment_start,
"context_ref": context_ref,
"context_hyp": context_hyp
})
# Note any extra sentences as misaligned
if len(reference_sentences) > len(hypothesis_sentences):
for i in range(min_length, len(reference_sentences)):
misaligned.append({
"index": i+1,
"reference": reference_sentences[i],
"hypothesis": "No corresponding sentence",
"misalignment_start": 0,
"context_ref": reference_sentences[i],
"context_hyp": "No corresponding sentence"
})
elif len(hypothesis_sentences) > len(reference_sentences):
for i in range(min_length, len(hypothesis_sentences)):
misaligned.append({
"index": i+1,
"reference": "No corresponding sentence",
"hypothesis": hypothesis_sentences[i],
"misalignment_start": 0,
"context_ref": "No corresponding sentence",
"context_hyp": hypothesis_sentences[i]
})
return misaligned
def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_cer, std_dev_wer, std_dev_cer, misaligned_sentences):
md = "### Sentence-level Metrics\n\n"
md += "#### Word Error Rate (WER)\n"
md += f"* Average WER: {average_wer:.2f}\n"
md += f"* Standard Deviation: {std_dev_wer:.2f}\n\n"
md += "#### Character Error Rate (CER)\n"
md += f"* Average CER: {average_cer:.2f}\n"
md += f"* Standard Deviation: {std_dev_cer:.2f}\n\n"
md += "### WER for Each Sentence\n\n"
for i, wer in enumerate(sentence_wers):
md += f"* Sentence {i+1}: {wer:.2f}\n"
md += "\n### CER for Each Sentence\n\n"
for i, cer in enumerate(sentence_cers):
md += f"* Sentence {i+1}: {cer:.2f}\n"
if misaligned_sentences:
md += "\n### Misaligned Sentences\n\n"
for misaligned in misaligned_sentences:
md += f"#### Sentence {misaligned['index']}\n"
md += f"* Reference: {misaligned['context_ref']}\n"
md += f"* Hypothesis: {misaligned['context_hyp']}\n"
md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
else:
md += "\n### Misaligned Sentences\n\n"
md += "* No misaligned sentences found."
return md
@spaces.GPU()
def process_files(reference_file, hypothesis_file):
try:
with open(reference_file.name, 'r') as f:
reference_text = f.read()
with open(hypothesis_file.name, 'r') as f:
hypothesis_text = f.read()
overall_wer = calculate_wer(reference_text, hypothesis_text)
overall_cer = calculate_cer(reference_text, hypothesis_text)
sentence_metrics = calculate_sentence_metrics(reference_text, hypothesis_text)
misaligned = identify_misaligned_sentences(reference_text, hypothesis_text)
return {
"Overall WER": overall_wer,
"Overall CER": overall_cer,
"Sentence WERs": sentence_metrics["sentence_wers"],
"Sentence CERs": sentence_metrics["sentence_cers"],
"Average WER": sentence_metrics["average_wer"],
"Average CER": sentence_metrics["average_cer"],
"Standard Deviation WER": sentence_metrics["std_dev_wer"],
"Standard Deviation CER": sentence_metrics["std_dev_cer"],
"Misaligned Sentences": misaligned
}
except Exception as e:
return {"error": str(e)}
def process_and_display(ref_file, hyp_file):
result = process_files(ref_file, hyp_file)
if "error" in result:
error_msg = result["error"]
return {"error": error_msg}, "", ""
metrics = {
"Overall WER": result["Overall WER"],
"Overall CER": result["Overall CER"]
}
metrics_md = format_sentence_metrics(
result["Sentence WERs"],
result["Sentence CERs"],
result["Average WER"],
result["Average CER"],
result["Standard Deviation WER"],
result["Standard Deviation CER"],
result["Misaligned Sentences"]
)
misaligned_md = "### Misaligned Sentences\n\n"
if result["Misaligned Sentences"]:
for misaligned in result["Misaligned Sentences"]:
misaligned_md += f"#### Sentence {misaligned['index']}\n"
misaligned_md += f"* Reference: {misaligned['context_ref']}\n"
misaligned_md += f"* Hypothesis: {misaligned['context_hyp']}\n"
misaligned_md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
else:
misaligned_md += "* No misaligned sentences found."
return metrics, metrics_md, misaligned_md
def main():
with gr.Blocks() as demo:
gr.Markdown("# ASR Metrics")
with gr.Row():
reference_file = gr.File(label="Upload Reference File")
hypothesis_file = gr.File(label="Upload Model Output File")
with gr.Row():
reference_preview = gr.Textbox(label="Reference Preview", lines=3)
hypothesis_preview = gr.Textbox(label="Hypothesis Preview", lines=3)
with gr.Row():
compute_button = gr.Button("Compute Metrics")
results_output = gr.JSON(label="Results")
metrics_output = gr.Markdown(label="Sentence Metrics")
misaligned_output = gr.Markdown(label="Misaligned Sentences")
# Update previews when files are uploaded
def update_previews(ref_file, hyp_file):
ref_text = ""
hyp_text = ""
if ref_file:
with open(ref_file.name, 'r') as f:
ref_text = f.read()[:200]
if hyp_file:
with open(hyp_file.name, 'r') as f:
hyp_text = f.read()[:200]
return ref_text, hyp_text
reference_file.change(
fn=update_previews,
inputs=[reference_file, hypothesis_file],
outputs=[reference_preview, hypothesis_preview]
)
hypothesis_file.change(
fn=update_previews,
inputs=[reference_file, hypothesis_file],
outputs=[reference_preview, hypothesis_preview]
)
compute_button.click(
fn=process_and_display,
inputs=[reference_file, hypothesis_file],
outputs=[results_output, metrics_output, misaligned_output]
)
demo.launch()
if __name__ == "__main__":
main() |