Spaces:
Sleeping
Sleeping
add nltk
Browse files
app.py
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
import jiwer
|
2 |
-
import spaces
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
@spaces.GPU()
|
7 |
def calculate_wer(reference, hypothesis):
|
@@ -24,33 +28,55 @@ def calculate_sentence_wer(reference, hypothesis):
|
|
24 |
"""
|
25 |
Calculate WER for each sentence and overall statistics.
|
26 |
"""
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
return {
|
40 |
"sentence_wers": [],
|
41 |
"average_wer": 0.0,
|
42 |
-
"std_dev": 0.0
|
|
|
43 |
}
|
44 |
|
45 |
-
average_wer = np.mean(sentence_wers)
|
46 |
-
std_dev = np.std(sentence_wers)
|
47 |
-
|
48 |
-
return {
|
49 |
-
"sentence_wers": sentence_wers,
|
50 |
-
"average_wer": average_wer,
|
51 |
-
"std_dev": std_dev
|
52 |
-
}
|
53 |
-
|
54 |
@spaces.GPU()
|
55 |
def process_files(reference_file, hypothesis_file):
|
56 |
try:
|
@@ -60,6 +86,11 @@ def process_files(reference_file, hypothesis_file):
|
|
60 |
with open(hypothesis_file.name, 'r') as f:
|
61 |
hypothesis_text = f.read()
|
62 |
|
|
|
|
|
|
|
|
|
|
|
63 |
wer_value = calculate_wer(reference_text, hypothesis_text)
|
64 |
cer_value = calculate_cer(reference_text, hypothesis_text)
|
65 |
sentence_wer_stats = calculate_sentence_wer(reference_text, hypothesis_text)
|
@@ -69,21 +100,39 @@ def process_files(reference_file, hypothesis_file):
|
|
69 |
"CER": cer_value,
|
70 |
"Sentence WERs": sentence_wer_stats["sentence_wers"],
|
71 |
"Average WER": sentence_wer_stats["average_wer"],
|
72 |
-
"Standard Deviation": sentence_wer_stats["std_dev"]
|
|
|
|
|
73 |
}
|
74 |
except Exception as e:
|
75 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
def format_sentence_wer_stats(sentence_wers, average_wer, std_dev):
|
78 |
if not sentence_wers:
|
79 |
-
|
|
|
80 |
|
81 |
-
md
|
82 |
md += f"* Average WER: {average_wer:.2f}\n"
|
83 |
md += f"* Standard Deviation: {std_dev:.2f}\n\n"
|
84 |
md += "### WER for Each Sentence\n\n"
|
85 |
for i, wer in enumerate(sentence_wers):
|
86 |
md += f"* Sentence {i+1}: {wer:.2f}\n"
|
|
|
87 |
return md
|
88 |
|
89 |
def main():
|
@@ -130,18 +179,24 @@ def main():
|
|
130 |
|
131 |
def process_and_display(ref_file, hyp_file):
|
132 |
result = process_files(ref_file, hyp_file)
|
133 |
-
if "error" in result:
|
134 |
-
return {}, {}, "Error: " + result["error"]
|
135 |
|
136 |
metrics = {
|
137 |
"WER": result["WER"],
|
138 |
"CER": result["CER"]
|
139 |
}
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
wer_stats_md = format_sentence_wer_stats(
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
145 |
)
|
146 |
|
147 |
return metrics, wer_stats_md
|
|
|
1 |
import jiwer
|
|
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
+
import nltk
|
5 |
+
from nltk.tokenize import sent_tokenize
|
6 |
+
|
7 |
+
# Ensure NLTK data is downloaded
|
8 |
+
nltk.download('punkt')
|
9 |
|
10 |
@spaces.GPU()
|
11 |
def calculate_wer(reference, hypothesis):
|
|
|
28 |
"""
|
29 |
Calculate WER for each sentence and overall statistics.
|
30 |
"""
|
31 |
+
try:
|
32 |
+
reference_sentences = sent_tokenize(reference)
|
33 |
+
hypothesis_sentences = sent_tokenize(hypothesis)
|
34 |
+
|
35 |
+
# Get minimum number of sentences
|
36 |
+
min_sentences = min(len(reference_sentences), len(hypothesis_sentences))
|
37 |
+
|
38 |
+
# Trim to the same number of sentences
|
39 |
+
reference_sentences = reference_sentences[:min_sentences]
|
40 |
+
hypothesis_sentences = hypothesis_sentences[:min_sentences]
|
41 |
+
|
42 |
+
sentence_wers = []
|
43 |
+
for ref, hyp in zip(reference_sentences, hypothesis_sentences):
|
44 |
+
sentence_wer = jiwer.wer(ref, hyp)
|
45 |
+
sentence_wers.append(sentence_wer)
|
46 |
+
|
47 |
+
if not sentence_wers:
|
48 |
+
return {
|
49 |
+
"sentence_wers": [],
|
50 |
+
"average_wer": 0.0,
|
51 |
+
"std_dev": 0.0,
|
52 |
+
"warning": "No sentences to compare"
|
53 |
+
}
|
54 |
|
55 |
+
average_wer = np.mean(sentence_wers)
|
56 |
+
std_dev = np.std(sentence_wers)
|
57 |
|
58 |
+
# Check if there were extra sentences
|
59 |
+
if len(reference_sentences) != len(hypothesis_sentences):
|
60 |
+
warning = f"Reference has {len(reference_sentences)} sentences, " \
|
61 |
+
f"hypothesis has {len(hypothesis_sentences)} sentences. " \
|
62 |
+
f"Only compared the first {min_sentences} sentences."
|
63 |
+
else:
|
64 |
+
warning = None
|
65 |
|
66 |
+
return {
|
67 |
+
"sentence_wers": sentence_wers,
|
68 |
+
"average_wer": average_wer,
|
69 |
+
"std_dev": std_dev,
|
70 |
+
"warning": warning
|
71 |
+
}
|
72 |
+
except Exception as e:
|
73 |
return {
|
74 |
"sentence_wers": [],
|
75 |
"average_wer": 0.0,
|
76 |
+
"std_dev": 0.0,
|
77 |
+
"error": str(e)
|
78 |
}
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
@spaces.GPU()
|
81 |
def process_files(reference_file, hypothesis_file):
|
82 |
try:
|
|
|
86 |
with open(hypothesis_file.name, 'r') as f:
|
87 |
hypothesis_text = f.read()
|
88 |
|
89 |
+
if not reference_text or not hypothesis_text:
|
90 |
+
return {
|
91 |
+
"error": "Both reference and hypothesis files must contain text"
|
92 |
+
}
|
93 |
+
|
94 |
wer_value = calculate_wer(reference_text, hypothesis_text)
|
95 |
cer_value = calculate_cer(reference_text, hypothesis_text)
|
96 |
sentence_wer_stats = calculate_sentence_wer(reference_text, hypothesis_text)
|
|
|
100 |
"CER": cer_value,
|
101 |
"Sentence WERs": sentence_wer_stats["sentence_wers"],
|
102 |
"Average WER": sentence_wer_stats["average_wer"],
|
103 |
+
"Standard Deviation": sentence_wer_stats["std_dev"],
|
104 |
+
"Warning": sentence_wer_stats.get("warning"),
|
105 |
+
"Error": sentence_wer_stats.get("error")
|
106 |
}
|
107 |
except Exception as e:
|
108 |
+
return {
|
109 |
+
"WER": 0.0,
|
110 |
+
"CER": 0.0,
|
111 |
+
"Sentence WERs": [],
|
112 |
+
"Average WER": 0.0,
|
113 |
+
"Standard Deviation": 0.0,
|
114 |
+
"Error": str(e)
|
115 |
+
}
|
116 |
+
|
117 |
+
def format_sentence_wer_stats(sentence_wers, average_wer, std_dev, warning, error):
|
118 |
+
md = ""
|
119 |
+
|
120 |
+
if error:
|
121 |
+
md += f"### Error\n{error}\n\n"
|
122 |
+
elif warning:
|
123 |
+
md += f"### Warning\n{warning}\n\n"
|
124 |
|
|
|
125 |
if not sentence_wers:
|
126 |
+
md += "No sentences to compare"
|
127 |
+
return md
|
128 |
|
129 |
+
md += "### Sentence-level WER Analysis\n\n"
|
130 |
md += f"* Average WER: {average_wer:.2f}\n"
|
131 |
md += f"* Standard Deviation: {std_dev:.2f}\n\n"
|
132 |
md += "### WER for Each Sentence\n\n"
|
133 |
for i, wer in enumerate(sentence_wers):
|
134 |
md += f"* Sentence {i+1}: {wer:.2f}\n"
|
135 |
+
|
136 |
return md
|
137 |
|
138 |
def main():
|
|
|
179 |
|
180 |
def process_and_display(ref_file, hyp_file):
|
181 |
result = process_files(ref_file, hyp_file)
|
|
|
|
|
182 |
|
183 |
metrics = {
|
184 |
"WER": result["WER"],
|
185 |
"CER": result["CER"]
|
186 |
}
|
187 |
|
188 |
+
error = result.get("Error")
|
189 |
+
warning = result.get("Warning")
|
190 |
+
sentence_wers = result.get("Sentence WERs", [])
|
191 |
+
average_wer = result.get("Average WER", 0.0)
|
192 |
+
std_dev = result.get("Standard Deviation", 0.0)
|
193 |
+
|
194 |
wer_stats_md = format_sentence_wer_stats(
|
195 |
+
sentence_wers,
|
196 |
+
average_wer,
|
197 |
+
std_dev,
|
198 |
+
warning,
|
199 |
+
error
|
200 |
)
|
201 |
|
202 |
return metrics, wer_stats_md
|