Spaces:
Sleeping
Sleeping
fix misalignment diplay issue
Browse files
app.py
CHANGED
@@ -33,36 +33,39 @@ def calculate_cer(reference, hypothesis):
|
|
33 |
def calculate_sentence_metrics(reference, hypothesis):
|
34 |
"""
|
35 |
Calculate WER and CER for each sentence and overall statistics.
|
|
|
36 |
"""
|
37 |
try:
|
38 |
reference_sentences = split_into_sentences(reference)
|
39 |
hypothesis_sentences = split_into_sentences(hypothesis)
|
40 |
|
41 |
-
if len(reference_sentences) != len(hypothesis_sentences):
|
42 |
-
raise ValueError("Reference and hypothesis must contain the same number of sentences")
|
43 |
-
|
44 |
sentence_wers = []
|
45 |
sentence_cers = []
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
47 |
wer = jiwer.wer(ref, hyp)
|
48 |
cer = jiwer.cer(ref, hyp)
|
49 |
sentence_wers.append(wer)
|
50 |
sentence_cers.append(cer)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
67 |
return {
|
68 |
"sentence_wers": sentence_wers,
|
@@ -74,19 +77,26 @@ def calculate_sentence_metrics(reference, hypothesis):
|
|
74 |
}
|
75 |
except Exception as e:
|
76 |
raise e
|
|
|
77 |
|
78 |
def identify_misaligned_sentences(reference_text, hypothesis_text):
|
79 |
"""
|
80 |
Identify sentences that don't match between reference and hypothesis.
|
|
|
81 |
Returns a dictionary with misaligned sentence pairs, their indices, and misalignment details.
|
82 |
"""
|
83 |
reference_sentences = split_into_sentences(reference_text)
|
84 |
hypothesis_sentences = split_into_sentences(hypothesis_text)
|
85 |
|
86 |
misaligned = []
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
if ref != hyp:
|
89 |
-
print(f"Debug: Found misalignment in sentence {i+1}")
|
90 |
# Find the first position where the sentences diverge
|
91 |
min_len = min(len(ref), len(hyp))
|
92 |
misalignment_start = 0
|
@@ -106,7 +116,29 @@ def identify_misaligned_sentences(reference_text, hypothesis_text):
|
|
106 |
"context_ref": context_ref,
|
107 |
"context_hyp": context_hyp
|
108 |
})
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
return misaligned
|
111 |
|
112 |
def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_cer, std_dev_wer, std_dev_cer, misaligned_sentences):
|
@@ -130,8 +162,8 @@ def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_c
|
|
130 |
md += "\n### Misaligned Sentences\n\n"
|
131 |
for misaligned in misaligned_sentences:
|
132 |
md += f"#### Sentence {misaligned['index']}\n"
|
133 |
-
md += f"* Reference: {misaligned['
|
134 |
-
md += f"* Hypothesis: {misaligned['
|
135 |
md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
|
136 |
else:
|
137 |
md += "\n### Misaligned Sentences\n\n"
|
@@ -139,7 +171,6 @@ def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_c
|
|
139 |
|
140 |
return md
|
141 |
|
142 |
-
|
143 |
@spaces.GPU()
|
144 |
def process_files(reference_file, hypothesis_file):
|
145 |
try:
|
@@ -168,6 +199,41 @@ def process_files(reference_file, hypothesis_file):
|
|
168 |
except Exception as e:
|
169 |
return {"error": str(e)}
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
def main():
|
172 |
with gr.Blocks() as demo:
|
173 |
gr.Markdown("# ASR Metrics")
|
@@ -193,10 +259,10 @@ def main():
|
|
193 |
|
194 |
if ref_file:
|
195 |
with open(ref_file.name, 'r') as f:
|
196 |
-
ref_text = f.read()[:200]
|
197 |
if hyp_file:
|
198 |
with open(hyp_file.name, 'r') as f:
|
199 |
-
hyp_text = f.read()[:200]
|
200 |
|
201 |
return ref_text, hyp_text
|
202 |
|
@@ -211,36 +277,6 @@ def main():
|
|
211 |
outputs=[reference_preview, hypothesis_preview]
|
212 |
)
|
213 |
|
214 |
-
def process_and_display(ref_file, hyp_file):
|
215 |
-
result = process_files(ref_file, hyp_file)
|
216 |
-
if "error" in result:
|
217 |
-
error_msg = result["error"]
|
218 |
-
return {"error": error_msg}, "", "", {"error": error_msg}
|
219 |
-
|
220 |
-
metrics = {
|
221 |
-
"Overall WER": result["Overall WER"],
|
222 |
-
"Overall CER": result["Overall CER"]
|
223 |
-
}
|
224 |
-
|
225 |
-
metrics_md = format_sentence_metrics(
|
226 |
-
result["Sentence WERs"],
|
227 |
-
result["Sentence CERs"],
|
228 |
-
result["Average WER"],
|
229 |
-
result["Average CER"],
|
230 |
-
result["Standard Deviation WER"],
|
231 |
-
result["Standard Deviation CER"],
|
232 |
-
result["Misaligned Sentences"]
|
233 |
-
)
|
234 |
-
|
235 |
-
misaligned_md = "### Misaligned Sentences\n\n"
|
236 |
-
for misaligned in result["Misaligned Sentences"]:
|
237 |
-
misaligned_md += f"#### Sentence {misaligned['index']}\n"
|
238 |
-
misaligned_md += f"* Reference: {misaligned['context_ref']}\n"
|
239 |
-
misaligned_md += f"* Hypothesis: {misaligned['context_hyp']}\n"
|
240 |
-
misaligned_md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
|
241 |
-
|
242 |
-
return metrics, metrics_md, misaligned_md
|
243 |
-
|
244 |
compute_button.click(
|
245 |
fn=process_and_display,
|
246 |
inputs=[reference_file, hypothesis_file],
|
|
|
33 |
def calculate_sentence_metrics(reference, hypothesis):
|
34 |
"""
|
35 |
Calculate WER and CER for each sentence and overall statistics.
|
36 |
+
Handles cases where the number of sentences differ.
|
37 |
"""
|
38 |
try:
|
39 |
reference_sentences = split_into_sentences(reference)
|
40 |
hypothesis_sentences = split_into_sentences(hypothesis)
|
41 |
|
|
|
|
|
|
|
42 |
sentence_wers = []
|
43 |
sentence_cers = []
|
44 |
+
min_length = min(len(reference_sentences), len(hypothesis_sentences))
|
45 |
+
|
46 |
+
for i in range(min_length):
|
47 |
+
ref = reference_sentences[i]
|
48 |
+
hyp = hypothesis_sentences[i]
|
49 |
+
|
50 |
wer = jiwer.wer(ref, hyp)
|
51 |
cer = jiwer.cer(ref, hyp)
|
52 |
sentence_wers.append(wer)
|
53 |
sentence_cers.append(cer)
|
54 |
|
55 |
+
# Calculate overall statistics
|
56 |
+
if sentence_wers:
|
57 |
+
average_wer = np.mean(sentence_wers)
|
58 |
+
std_dev_wer = np.std(sentence_wers)
|
59 |
+
else:
|
60 |
+
average_wer = 0.0
|
61 |
+
std_dev_wer = 0.0
|
62 |
+
|
63 |
+
if sentence_cers:
|
64 |
+
average_cer = np.mean(sentence_cers)
|
65 |
+
std_dev_cer = np.std(sentence_cers)
|
66 |
+
else:
|
67 |
+
average_cer = 0.0
|
68 |
+
std_dev_cer = 0.0
|
69 |
|
70 |
return {
|
71 |
"sentence_wers": sentence_wers,
|
|
|
77 |
}
|
78 |
except Exception as e:
|
79 |
raise e
|
80 |
+
|
81 |
|
82 |
def identify_misaligned_sentences(reference_text, hypothesis_text):
|
83 |
"""
|
84 |
Identify sentences that don't match between reference and hypothesis.
|
85 |
+
Handles cases where the number of sentences differ.
|
86 |
Returns a dictionary with misaligned sentence pairs, their indices, and misalignment details.
|
87 |
"""
|
88 |
reference_sentences = split_into_sentences(reference_text)
|
89 |
hypothesis_sentences = split_into_sentences(hypothesis_text)
|
90 |
|
91 |
misaligned = []
|
92 |
+
min_length = min(len(reference_sentences), len(hypothesis_sentences))
|
93 |
+
|
94 |
+
# Compare sentences up to the minimum length
|
95 |
+
for i in range(min_length):
|
96 |
+
ref = reference_sentences[i]
|
97 |
+
hyp = hypothesis_sentences[i]
|
98 |
+
|
99 |
if ref != hyp:
|
|
|
100 |
# Find the first position where the sentences diverge
|
101 |
min_len = min(len(ref), len(hyp))
|
102 |
misalignment_start = 0
|
|
|
116 |
"context_ref": context_ref,
|
117 |
"context_hyp": context_hyp
|
118 |
})
|
119 |
+
|
120 |
+
# Note any extra sentences as misaligned
|
121 |
+
if len(reference_sentences) > len(hypothesis_sentences):
|
122 |
+
for i in range(min_length, len(reference_sentences)):
|
123 |
+
misaligned.append({
|
124 |
+
"index": i+1,
|
125 |
+
"reference": reference_sentences[i],
|
126 |
+
"hypothesis": "No corresponding sentence",
|
127 |
+
"misalignment_start": 0,
|
128 |
+
"context_ref": reference_sentences[i],
|
129 |
+
"context_hyp": "No corresponding sentence"
|
130 |
+
})
|
131 |
+
elif len(hypothesis_sentences) > len(reference_sentences):
|
132 |
+
for i in range(min_length, len(hypothesis_sentences)):
|
133 |
+
misaligned.append({
|
134 |
+
"index": i+1,
|
135 |
+
"reference": "No corresponding sentence",
|
136 |
+
"hypothesis": hypothesis_sentences[i],
|
137 |
+
"misalignment_start": 0,
|
138 |
+
"context_ref": "No corresponding sentence",
|
139 |
+
"context_hyp": hypothesis_sentences[i]
|
140 |
+
})
|
141 |
+
|
142 |
return misaligned
|
143 |
|
144 |
def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_cer, std_dev_wer, std_dev_cer, misaligned_sentences):
|
|
|
162 |
md += "\n### Misaligned Sentences\n\n"
|
163 |
for misaligned in misaligned_sentences:
|
164 |
md += f"#### Sentence {misaligned['index']}\n"
|
165 |
+
md += f"* Reference: {misaligned['context_ref']}\n"
|
166 |
+
md += f"* Hypothesis: {misaligned['context_hyp']}\n"
|
167 |
md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
|
168 |
else:
|
169 |
md += "\n### Misaligned Sentences\n\n"
|
|
|
171 |
|
172 |
return md
|
173 |
|
|
|
174 |
@spaces.GPU()
|
175 |
def process_files(reference_file, hypothesis_file):
|
176 |
try:
|
|
|
199 |
except Exception as e:
|
200 |
return {"error": str(e)}
|
201 |
|
202 |
+
def process_and_display(ref_file, hyp_file):
|
203 |
+
result = process_files(ref_file, hyp_file)
|
204 |
+
|
205 |
+
if "error" in result:
|
206 |
+
error_msg = result["error"]
|
207 |
+
return {"error": error_msg}, "", ""
|
208 |
+
|
209 |
+
metrics = {
|
210 |
+
"Overall WER": result["Overall WER"],
|
211 |
+
"Overall CER": result["Overall CER"]
|
212 |
+
}
|
213 |
+
|
214 |
+
metrics_md = format_sentence_metrics(
|
215 |
+
result["Sentence WERs"],
|
216 |
+
result["Sentence CERs"],
|
217 |
+
result["Average WER"],
|
218 |
+
result["Average CER"],
|
219 |
+
result["Standard Deviation WER"],
|
220 |
+
result["Standard Deviation CER"],
|
221 |
+
result["Misaligned Sentences"]
|
222 |
+
)
|
223 |
+
|
224 |
+
misaligned_md = "### Misaligned Sentences\n\n"
|
225 |
+
if result["Misaligned Sentences"]:
|
226 |
+
for misaligned in result["Misaligned Sentences"]:
|
227 |
+
misaligned_md += f"#### Sentence {misaligned['index']}\n"
|
228 |
+
misaligned_md += f"* Reference: {misaligned['context_ref']}\n"
|
229 |
+
misaligned_md += f"* Hypothesis: {misaligned['context_hyp']}\n"
|
230 |
+
misaligned_md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
|
231 |
+
else:
|
232 |
+
misaligned_md += "* No misaligned sentences found."
|
233 |
+
|
234 |
+
return metrics, metrics_md, misaligned_md
|
235 |
+
|
236 |
+
|
237 |
def main():
|
238 |
with gr.Blocks() as demo:
|
239 |
gr.Markdown("# ASR Metrics")
|
|
|
259 |
|
260 |
if ref_file:
|
261 |
with open(ref_file.name, 'r') as f:
|
262 |
+
ref_text = f.read()[:200]
|
263 |
if hyp_file:
|
264 |
with open(hyp_file.name, 'r') as f:
|
265 |
+
hyp_text = f.read()[:200]
|
266 |
|
267 |
return ref_text, hyp_text
|
268 |
|
|
|
277 |
outputs=[reference_preview, hypothesis_preview]
|
278 |
)
|
279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
compute_button.click(
|
281 |
fn=process_and_display,
|
282 |
inputs=[reference_file, hypothesis_file],
|