Spaces:
Running
Running
File size: 28,808 Bytes
a4de739 01b1a90 3035463 01b1a90 b7f6be7 a4de739 0c9e4b7 e64fe0e 0c9e4b7 9a12ea3 e64fe0e 0c9e4b7 4e0cddb da3acda ab88097 6024481 da3acda ab88097 da3acda 01b1a90 6024481 da3acda 6024481 da3acda ab88097 3035463 ab88097 01b1a90 6024481 3035463 6024481 ab88097 da3acda b7f6be7 4a365e4 b7f6be7 01b1a90 6024481 4a365e4 6024481 4a365e4 4e0cddb b0796be 8fb581d b0796be 8fb581d b0796be 7c4de94 da3acda 01b1a90 5bf8193 6024481 da3acda 5bf8193 3035463 da3acda 3035463 da3acda 3035463 45b666a b0796be 3035463 5bf8193 3035463 01b1a90 45b666a 3035463 da3acda 3035463 ff45445 3035463 da0c779 45b666a da0c779 ea39258 45b666a 6e37521 ea39258 8fb581d da3acda 5bf8193 da3acda 4a365e4 ab88097 5bf8193 45b666a ab88097 da3acda ab88097 22a278f ab88097 b0796be ab88097 5bf8193 22a278f 6024481 17afa62 b0796be 17afa62 b0796be 17afa62 7c4de94 ab88097 01b1a90 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f ea0b3fe ab88097 22a278f da0c779 ab88097 da0c779 ea39258 22a278f 795a6cd ea39258 8fb581d 3035463 5bf8193 3035463 da3acda f4c84bc b7f6be7 5bf8193 4a365e4 b7f6be7 f4c84bc b7f6be7 f4c84bc b0796be 8fb581d b7f6be7 6024481 8fb581d 6024481 4a365e4 6024481 4a365e4 4beff90 4a365e4 da0c779 ea39258 f4c84bc 795a6cd 3356cfa 4a365e4 5bf8193 4a365e4 01b1a90 b7f6be7 6024481 f384e43 4a365e4 4beff90 01b1a90 da3acda 5bf8193 da3acda 3bcd060 372cab2 8fb581d 372cab2 8fb581d 372cab2 b7f6be7 372cab2 b7f6be7 372cab2 b7f6be7 372cab2 3bcd060 372cab2 da0c779 372cab2 8fb581d 372cab2 ea39258 372cab2 da0c779 372cab2 d357027 372cab2 da0c779 372cab2 da0c779 ea39258 372cab2 ea39258 8fb581d ea39258 372cab2 3bcd060 f384e43 4beff90 ea39258 372cab2 3bcd060 955e16b 3bcd060 372cab2 955e16b 372cab2 8e4067c 372cab2 8e4067c 5bf8193 8e4067c da0c779 8e4067c 372cab2 8fb581d 8e4067c d9c4db0 d3df2dd 8e4067c da0c779 dd23928 955e16b da0c779 dd23928 955e16b 8fb581d 372cab2 01b1a90 e64fe0e 945e73b 8cbba1e 9a12ea3 01b1a90 0c9e4b7 8cbba1e 01b1a90 a0d59cd 5bf8193 8cbba1e 5bf8193 01b1a90 a0d59cd 4beff90 01b1a90 a0d59cd f384e43 5bf8193 01b1a90 e64fe0e 9a12ea3 8cbba1e 9a12ea3 e64fe0e 8cbba1e 955e16b 8cbba1e 9a12ea3 e64fe0e 5bf8193 9a12ea3 5bf8193 8cbba1e 5bf8193 8fb581d 8cbba1e 945e73b 8cbba1e 945e73b 8cbba1e 945e73b e64fe0e 5bf8193 01b1a90 5bf8193 8fb581d 5bf8193 e64fe0e 5bf8193 e64fe0e 13a4dcd 8fb581d 3bcd060 f384e43 4beff90 3bcd060 d357027 44e6d15 d357027 44e6d15 372cab2 e64fe0e 372cab2 d357027 372cab2 44e6d15 e64fe0e 372cab2 d24dd3c 83bb0e4 d24dd3c 83bb0e4 d24dd3c 83bb0e4 d24dd3c 01b1a90 e64fe0e 945e73b 8cbba1e 955e16b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
import numpy as np
from tqdm.auto import tqdm
import os
# CSS to style the custom share button (for the "Sparse Representation" tab)
css = """
.share-button-container {
display: flex;
justify-content: center;
margin-top: 10px;
margin-bottom: 20px;
}
.custom-share-button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border: none;
color: white;
padding: 8px 16px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 14px;
margin: 4px 2px;
cursor: pointer;
border-radius: 6px;
transition: all 0.3s ease;
}
.custom-share-button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
/* IMPORTANT: This CSS targets Gradio's *default* share button that appears
when demo.launch(share=True) is used.
You might want to comment this out if you prefer Gradio's default positioning
for the main share button (usually in the header/footer) and rely only on your custom one.
*/
.share-button {
position: fixed !important;
top: 20px !important;
right: 20px !important;
z-index: 1000 !important;
background: #4CAF50 !important;
color: white !important;
border-radius: 8px !important;
padding: 8px 16px !important;
font-weight: bold !important;
box-shadow: 0 2px 10px rgba(0,0,0,0.2) !important;
}
.share-button:hover {
background: #45a049 !important;
transform: translateY(-1px) !important;
}
"""
# --- Model Loading ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None
tokenizer_splade_doc = None
model_splade_doc = None
# Load SPLADE v3 model (original)
try:
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade.eval()
print("SPLADE-cocondenser-distil model loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-cocondenser-distil model: {e}")
print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")
# Load SPLADE v3 Lexical model
try:
splade_lexical_model_name = "naver/splade-v3-lexical"
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
model_splade_lexical.eval()
print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Lexical model: {e}")
print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# Load SPLADE v3 Doc model - Model loading is still necessary even if its logits aren't used for BoW
try:
splade_doc_model_name = "naver/splade-v3-doc"
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name) # Still load the model
model_splade_doc.eval()
print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Doc model: {e}")
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# --- Helper function for lexical mask (now handles batches, but used for single input here) ---
def create_lexical_bow_mask(input_ids_batch, vocab_size, tokenizer):
"""
Creates a batch of lexical BOW masks.
input_ids_batch: torch.Tensor of shape (batch_size, sequence_length)
vocab_size: int, size of the tokenizer vocabulary
tokenizer: the tokenizer object
Returns: torch.Tensor of shape (batch_size, vocab_size)
"""
batch_size = input_ids_batch.shape[0]
bow_masks = torch.zeros(batch_size, vocab_size, device=input_ids_batch.device)
for i in range(batch_size):
input_ids = input_ids_batch[i] # Get input_ids for the current item in the batch
meaningful_token_ids = []
for token_id in input_ids.tolist():
if token_id not in [
tokenizer.pad_token_id,
tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.mask_token_id,
tokenizer.unk_token_id
]:
meaningful_token_ids.append(token_id)
if meaningful_token_ids:
# Apply mask to the current row in the batch
bow_masks[i, list(set(meaningful_token_ids))] = 1
return bow_masks
# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) ---
# These functions now return a tuple: (main_representation_str, info_str)
def get_splade_cocondenser_representation(text):
if tokenizer_splade is None or model_splade is None:
return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors.", ""
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze() # Squeeze is fine here as it's a single input
else:
return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found.", ""
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "MLM Representation:\n\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
# Changed to paragraph style
terms_list = []
for term, weight in sorted_representation:
terms_list.append(f"**{term}**: {weight:.4f}")
formatted_output += ", ".join(terms_list) + "."
info_output = f"" # Line 1
info_output += f"Total non-zero terms in vector: {len(indices)}\n" # Line 2 (and onwards for sparsity)
return formatted_output, info_output
def get_splade_lexical_representation(text):
if tokenizer_splade_lexical is None or model_splade_lexical is None:
return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors.", ""
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_lexical(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze() # Squeeze is fine here
else:
return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found.", ""
# Always apply lexical mask for this model's specific behavior
vocab_size = tokenizer_splade_lexical.vocab_size
# Call with unsqueezed input_ids for single sample processing
bow_mask = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
).squeeze() # Squeeze back for single output
splade_vector = splade_vector * bow_mask
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_lexical.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "MLP Representation:\n\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
# Changed to paragraph style
terms_list = []
for term, weight in sorted_representation:
terms_list.append(f"**{term}**: {weight:.4f}")
formatted_output += ", ".join(terms_list) + "."
info_output = f"" # Line 1
info_output += f"Total non-zero terms in vector: {len(indices)}\n" # Line 2 (and onwards for sparsity)
return formatted_output, info_output
def get_splade_doc_representation(text):
if tokenizer_splade_doc is None: # No longer need model_splade_doc to be loaded for 'logits'
return "SPLADE-v3-Doc tokenizer is not loaded. Please check the console for loading errors.", ""
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(torch.device("cpu")) for k, v in inputs.items()} # Ensure on CPU for direct mask creation
vocab_size = tokenizer_splade_doc.vocab_size
# Directly create the binary Bag-of-Words vector using the input_ids
binary_bow_vector = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_doc
).squeeze() # Squeeze back for single output
indices = torch.nonzero(binary_bow_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = [1.0] * len(indices) # All values are 1 for binary representation
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_doc.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity
formatted_output = "Binary:\n\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
# Changed to paragraph style
terms_list = []
for term, _ in sorted_representation: # For binary, weight is always 1, so no need to display
terms_list.append(f"**{term}**")
formatted_output += ", ".join(terms_list) + "."
info_output = f"" # Line 1
info_output += f"Total non-zero terms in vector: {len(indices)}" # Line 2
return formatted_output, info_output
# --- Unified Prediction Function for the Explorer Tab ---
def predict_representation_explorer(model_choice, text):
if model_choice == "MLM encoder (SPLADE-cocondenser-distil)":
return get_splade_cocondenser_representation(text)
elif model_choice == "MLP encoder (SPLADE-v3-lexical)":
return get_splade_lexical_representation(text)
elif model_choice == "Binary": # Changed name
return get_splade_doc_representation(text)
else:
return "Please select a model.", "" # Return two empty strings for consistency
# --- Core Representation Functions (Return RAW TENSORS - for Dot Product Tab) ---
# These functions remain unchanged from the previous iteration, as they return the raw tensors.
def get_splade_cocondenser_vector(text):
if tokenizer_splade is None or model_splade is None:
return None
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze()
return splade_vector
return None
def get_splade_lexical_vector(text):
if tokenizer_splade_lexical is None or model_splade_lexical is None:
return None
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_lexical(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze()
vocab_size = tokenizer_splade_lexical.vocab_size
bow_mask = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
).squeeze()
splade_vector = splade_vector * bow_mask
return splade_vector
return None
def get_splade_doc_vector(text):
if tokenizer_splade_doc is None: # No longer need model_splade_doc to be loaded for 'logits'
return None
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(torch.device("cpu")) for k, v in inputs.items()} # Ensure on CPU for direct mask creation
vocab_size = tokenizer_splade_doc.vocab_size
# Directly create the binary Bag-of-Words vector using the input_ids
binary_bow_vector = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_doc
).squeeze()
return binary_bow_vector
# --- Function to get formatted representation from a raw vector and tokenizer ---
# This function remains unchanged as it's a generic formatter for any sparse vector.
def format_sparse_vector_output(splade_vector, tokenizer, is_binary=False):
if splade_vector is None:
return "Failed to generate vector.", ""
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
if is_binary:
values = [1.0] * len(indices)
else:
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
if is_binary:
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for binary
else:
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = ""
if not sorted_representation:
formatted_output += "No significant terms found.\n"
else:
terms_list = []
for i, (term, weight) in enumerate(sorted_representation):
# Limiting to 50 terms for display to avoid overly long output
if is_binary:
terms_list.append(f"**{term}**")
else:
terms_list.append(f"**{term}**: {weight:.4f}")
formatted_output += ", ".join(terms_list) + "."
# This is the line that will now always be split into two
info_output = f"Total non-zero terms: {len(indices)}\n" # Line 1
return formatted_output, info_output
# --- NEW/MODIFIED: Helper to get the correct vector function, tokenizer, and binary flag ---
def get_model_assets(model_choice_str):
if model_choice_str == "MLM encoder (SPLADE-cocondenser-distil)":
return get_splade_cocondenser_vector, tokenizer_splade, False, "MLM encoder (SPLADE-cocondenser-distil)"
elif model_choice_str == "MLP encoder (SPLADE-v3-lexical)":
return get_splade_lexical_vector, tokenizer_splade_lexical, False, "MLP encoder (SPLADE-v3-lexical)"
elif model_choice_str == "Binary":
return get_splade_doc_vector, tokenizer_splade_doc, True, "Binary Bag-of-Words"
else:
return None, None, False, "Unknown Model"
# --- MODIFIED: Dot Product Calculation Function for the new tab ---
def calculate_dot_product_and_representations_independent(query_model_choice, doc_model_choice, query_text, doc_text):
query_vector_fn, query_tokenizer, query_is_binary, query_model_name_display = get_model_assets(query_model_choice)
doc_vector_fn, doc_tokenizer, doc_is_binary, doc_model_name_display = get_model_assets(doc_model_choice)
if query_vector_fn is None or doc_vector_fn is None:
return "Please select valid models for both query and document encoding.", ""
query_vector = query_vector_fn(query_text)
doc_vector = doc_vector_fn(doc_text)
if query_vector is None or doc_vector is None:
return "Failed to generate one or both vectors. Please check model loading and input text.", ""
# Calculate overall dot product
dot_product = float(torch.dot(query_vector.cpu(), doc_vector.cpu()).item())
# Format representations for display
query_main_rep_str, query_info_str = format_sparse_vector_output(query_vector, query_tokenizer, query_is_binary)
doc_main_rep_str, doc_info_str = format_sparse_vector_output(doc_vector, doc_tokenizer, doc_is_binary)
# --- NEW FEATURE: Calculate dot product of overlapping terms ---
overlapping_terms_dot_products = {}
query_indices = torch.nonzero(query_vector).squeeze().cpu()
doc_indices = torch.nonzero(doc_vector).squeeze().cpu()
# Handle cases where vectors are empty or single element
if query_indices.dim() == 0 and query_indices.numel() == 1:
query_indices = query_indices.unsqueeze(0)
if doc_indices.dim() == 0 and doc_indices.numel() == 1:
doc_indices = doc_indices.unsqueeze(0)
# Convert indices to sets for efficient intersection
query_index_set = set(query_indices.tolist())
doc_index_set = set(doc_indices.tolist())
common_indices = sorted(list(query_index_set.intersection(doc_index_set)))
if common_indices:
for idx in common_indices:
query_weight = query_vector[idx].item()
doc_weight = doc_vector[idx].item()
term = query_tokenizer.decode([idx]) # Tokenizers should be the same for this purpose
if term not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(term.strip()) > 0:
overlapping_terms_dot_products[term] = query_weight * doc_weight
sorted_overlapping_dot_products = sorted(
overlapping_terms_dot_products.items(),
key=lambda item: item[1],
reverse=True
)
# --- End NEW FEATURE ---
# Combine output into a single string for the Markdown component
full_output = f"### Overall Dot Product Score: {dot_product:.6f}\n\n"
full_output += "---\n\n"
# Overlapping Terms Dot Products
if sorted_overlapping_dot_products:
full_output += "### Product of Query and Document Term Scores:\n"
full_output += "\n" # Removed the individual weight explanation
overlap_list = []
for term, product_val in sorted_overlapping_dot_products:
overlap_list.append(f"**{term}**: {product_val:.4f}") # Simplified to just the dot product
full_output += ", ".join(overlap_list) + ".\n\n"
full_output += "---\n\n"
else:
full_output += "### No Overlapping Terms Found.\n\n"
full_output += "---\n\n"
# Query Representation
full_output += f"#### Query Representation: {query_model_name_display}\n" # Smaller heading for sub-section
full_output += f"> {query_main_rep_str}\n" # Using blockquote for the sparse list
full_output += f"> {query_info_str}\n" # Using blockquote for info as well
full_output += "\n---\n\n" # Separator
# Document Representation
full_output += f"#### Document Representation: {doc_model_name_display}\n" # Smaller heading for sub-section
full_output += f"> {doc_main_rep_str}\n" # Using blockquote
full_output += f"> {doc_info_str}" # Using blockquote
return full_output
# Global variable to store the share URL once the app is launched
global_share_url = None
def get_current_share_url():
"""Returns the globally stored share URL."""
return global_share_url if global_share_url else "Share URL not available yet."
# --- Gradio Interface Setup with Tabs ---
with gr.Blocks(title="SPLADE Demos", css=css) as demo:
gr.Markdown("# 🌌 Sparse Encoder Playground") # Updated title
gr.Markdown("Explore different SPLADE models and their sparse representation types, and calculate similarity between query and document representations.") # Updated description
with gr.Tabs():
with gr.TabItem("Sparse Representation"):
gr.Markdown("### Produce a Sparse Representation of an Input Text")
with gr.Row():
with gr.Column(scale=1): # Left column for inputs and info
model_radio = gr.Radio(
[
"MLM encoder (SPLADE-cocondenser-distil)",
"MLP encoder (SPLADE-v3-lexical)",
"Binary"
],
label="Choose Sparse Encoder",
value="MLM encoder (SPLADE-cocondenser-distil)"
)
input_text = gr.Textbox(
lines=5,
label="Enter your query or document text here:",
placeholder="e.g., Why is Padua the nicest city in Italy?"
)
# Custom Share Button and URL display
with gr.Row(elem_classes="share-button-container"):
share_button = gr.Button(
"🔗 Get Share Link",
elem_classes="custom-share-button",
size="sm"
)
share_output = gr.Textbox(
label="Share URL",
interactive=True,
visible=False,
placeholder="Click 'Get Share Link' to generate URL..."
)
info_output_display = gr.Markdown(
value="",
label="Vector Information",
elem_id="info_output_display"
)
with gr.Column(scale=2): # Right column for the main representation output
main_representation_output = gr.Markdown()
# Connect share button.
share_button.click(
fn=get_current_share_url,
outputs=share_output
).then(
fn=lambda: gr.update(visible=True),
outputs=share_output
)
# Connect the core prediction logic
model_radio.change(
fn=predict_representation_explorer,
inputs=[model_radio, input_text],
outputs=[main_representation_output, info_output_display]
)
input_text.change(
fn=predict_representation_explorer,
inputs=[model_radio, input_text],
outputs=[main_representation_output, info_output_display]
)
# Initial call to populate on load (optional, but good for demo)
demo.load(
fn=lambda: predict_representation_explorer(model_radio.value, input_text.value),
outputs=[main_representation_output, info_output_display]
)
with gr.TabItem("Compute Query-Document Similarity Score"):
gr.Markdown("### Calculate Dot Product Similarity Between Encoded Query and Document")
model_choices = [
"MLM encoder (SPLADE-cocondenser-distil)",
"MLP encoder (SPLADE-v3-lexical)",
"Binary"
]
# Input components for the second tab
query_model_radio = gr.Radio(
model_choices,
label="Choose Query Encoding Model",
value="MLM encoder (SPLADE-cocondenser-distil)"
)
doc_model_radio = gr.Radio(
model_choices,
label="Choose Document Encoding Model",
value="MLM encoder (SPLADE-cocondenser-distil)"
)
query_text_input = gr.Textbox(
lines=3,
label="Enter Query Text:",
placeholder="e.g., famous dishes of Padua"
)
doc_text_input = gr.Textbox(
lines=5,
label="Enter Document Text:",
placeholder="e.g., Padua's cuisine is as famous as its legendary University."
)
# --- MODIFIED: Output component as a gr.Markdown with scrolling ---
# Reverting to gr.Markdown, and adding height/scroll for it
output_dot_product_markdown = gr.Markdown(
# Use value="" to initialize, content will be set by the function
value="",
# Fixed height for the scrollable area
# You can adjust this value (e.g., "500px") to your preference
# Or set it as a percentage of available space, e.g., "80%"
height=500, # Example: 500 pixels height
# Enable vertical scrolling if content overflows
# "auto" is often good, "scroll" always shows scrollbar
# Gradio uses `css` for this, so these parameters might translate to inline styles
# or custom CSS classes automatically added by Gradio.
elem_classes=["scrollable-output"] # Add a custom class for CSS targeting if needed
)
# Add CSS specifically for this scrollable markdown output
# This needs to be added to the overall `css` string or handled directly here
# For simplicity, let's assume `height` itself will enable scroll in newer Gradio,
# or add a specific CSS class targeting the markdown.
# However, for pure markdown, `height` is the primary way.
# Update the gr.Interface call to use the new Markdown output
gr.Interface(
fn=calculate_dot_product_and_representations_independent,
inputs=[
query_model_radio,
doc_model_radio,
query_text_input,
doc_text_input
],
outputs=output_dot_product_markdown, # Changed back to Markdown
allow_flagging="never"
)
# --- UPDATED CITATION BLOCK WITH TWO REFERENCES ---
gr.Markdown(
"""
---
### References
This demo utilizes **SPLADE** models. For more details, please refer to the following papers:
1. Formal, T., Lassance, C., Piwowarski, B., & Clinchant, S. (2022). **From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective**. *arXiv preprint arXiv:2205.04733*. Available at: [https://arxiv.org/abs/2205.04733](https://arxiv.org/abs/2205.04733)
2. Lassance, C., Déjean, H., Formal, T., & Clinchant, S. (2024). **SPLADE-v3: New baselines for SPLADE**. *arXiv preprint arXiv:2403.06789*. Available at: [https://arxiv.org/abs/2403.06789](https://arxiv.org/abs/2403.06789)
"""
)
# This block ensures the share URL is captured when the app launches
if __name__ == "__main__":
launched_demo = demo.launch(share=True)
print("\n--- Gradio App Launched ---")
print("If a public share link is generated, it will be displayed in your console.")
print("You can also use the '🔗 Get Share Link' button on the 'Sparse Representation' tab.")
print("---------------------------\n") |