Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -270,7 +270,7 @@ def get_splade_doc_representation(text):
|
|
270 |
|
271 |
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity
|
272 |
|
273 |
-
formatted_output = "Binary
|
274 |
if not sorted_representation:
|
275 |
formatted_output += "No significant terms found for this input.\n"
|
276 |
else:
|
@@ -292,7 +292,7 @@ def predict_representation_explorer(model_choice, text):
|
|
292 |
return get_splade_cocondenser_representation(text)
|
293 |
elif model_choice == "MLP encoder (SPLADE-v3-lexical)":
|
294 |
return get_splade_lexical_representation(text)
|
295 |
-
elif model_choice == "Binary
|
296 |
return get_splade_doc_representation(text)
|
297 |
else:
|
298 |
return "Please select a model.", "" # Return two empty strings for consistency
|
@@ -414,7 +414,7 @@ def get_model_assets(model_choice_str):
|
|
414 |
return get_splade_cocondenser_vector, tokenizer_splade, False, "MLM encoder (SPLADE-cocondenser-distil)"
|
415 |
elif model_choice_str == "MLP encoder (SPLADE-v3-lexical)":
|
416 |
return get_splade_lexical_vector, tokenizer_splade_lexical, False, "MLP encoder (SPLADE-v3-lexical)"
|
417 |
-
elif model_choice_str == "Binary
|
418 |
return get_splade_doc_vector, tokenizer_splade_doc, True, "Binary Bag-of-Words"
|
419 |
else:
|
420 |
return None, None, False, "Unknown Model"
|
@@ -480,7 +480,7 @@ with gr.Blocks(title="SPLADE Demos", css=css) as demo:
|
|
480 |
[
|
481 |
"MLM encoder (SPLADE-cocondenser-distil)",
|
482 |
"MLP encoder (SPLADE-v3-lexical)",
|
483 |
-
"Binary
|
484 |
],
|
485 |
label="Choose Sparse Encoder",
|
486 |
value="MLM encoder (SPLADE-cocondenser-distil)"
|
@@ -549,7 +549,7 @@ with gr.Blocks(title="SPLADE Demos", css=css) as demo:
|
|
549 |
model_choices = [
|
550 |
"MLM encoder (SPLADE-cocondenser-distil)",
|
551 |
"MLP encoder (SPLADE-v3-lexical)",
|
552 |
-
"Binary
|
553 |
]
|
554 |
|
555 |
# Input components for the second tab
|
|
|
270 |
|
271 |
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity
|
272 |
|
273 |
+
formatted_output = "Binary:\n\n"
|
274 |
if not sorted_representation:
|
275 |
formatted_output += "No significant terms found for this input.\n"
|
276 |
else:
|
|
|
292 |
return get_splade_cocondenser_representation(text)
|
293 |
elif model_choice == "MLP encoder (SPLADE-v3-lexical)":
|
294 |
return get_splade_lexical_representation(text)
|
295 |
+
elif model_choice == "Binary": # Changed name
|
296 |
return get_splade_doc_representation(text)
|
297 |
else:
|
298 |
return "Please select a model.", "" # Return two empty strings for consistency
|
|
|
414 |
return get_splade_cocondenser_vector, tokenizer_splade, False, "MLM encoder (SPLADE-cocondenser-distil)"
|
415 |
elif model_choice_str == "MLP encoder (SPLADE-v3-lexical)":
|
416 |
return get_splade_lexical_vector, tokenizer_splade_lexical, False, "MLP encoder (SPLADE-v3-lexical)"
|
417 |
+
elif model_choice_str == "Binary":
|
418 |
return get_splade_doc_vector, tokenizer_splade_doc, True, "Binary Bag-of-Words"
|
419 |
else:
|
420 |
return None, None, False, "Unknown Model"
|
|
|
480 |
[
|
481 |
"MLM encoder (SPLADE-cocondenser-distil)",
|
482 |
"MLP encoder (SPLADE-v3-lexical)",
|
483 |
+
"Binary"
|
484 |
],
|
485 |
label="Choose Sparse Encoder",
|
486 |
value="MLM encoder (SPLADE-cocondenser-distil)"
|
|
|
549 |
model_choices = [
|
550 |
"MLM encoder (SPLADE-cocondenser-distil)",
|
551 |
"MLP encoder (SPLADE-v3-lexical)",
|
552 |
+
"Binary"
|
553 |
]
|
554 |
|
555 |
# Input components for the second tab
|