Spaces:
Running
Running
hopefully fixed unicoil
Browse files
app.py
CHANGED
@@ -86,131 +86,56 @@ def get_unicoil_binary_representation(text):
|
|
86 |
return "UNICOIL model is not loaded. Please check the console for loading errors."
|
87 |
|
88 |
inputs = tokenizer_unicoil(text, return_tensors="pt", padding=True, truncation=True)
|
|
|
|
|
89 |
inputs = {k: v.to(model_unicoil.device) for k, v in inputs.items()}
|
90 |
|
91 |
with torch.no_grad():
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
# However, looking at `castorini/unicoil-msmarco-passage`
|
125 |
-
# its `config.json` might give hints or the model itself is structured.
|
126 |
-
# Often, it uses `BertForMaskedLM` and then applies `log(1+relu)` to the logits.
|
127 |
-
# Let's assume it behaves similar to SPLADE for simplicity of extraction for now,
|
128 |
-
# or we might need to load it as `AutoModelForMaskedLM` if its internal structure
|
129 |
-
# is indeed like that, and then apply a binarization.
|
130 |
-
|
131 |
-
# Re-evaluating: UNICOIL typically *learns* explicit token weights.
|
132 |
-
# The common approach for UNICOIL with Hugging Face is indeed to load it
|
133 |
-
# as `AutoModelForMaskedLM` and use its `logits` output, similar to SPLADE,
|
134 |
-
# but with a different aggregation strategy.
|
135 |
-
# Let's verify the model type for 'castorini/unicoil-msmarco-passage'.
|
136 |
-
# Its config.json and architecture implies it's a BertForMaskedLM variant.
|
137 |
-
|
138 |
-
output = model_unicoil(**inputs) # This should be a BaseModelOutputWithPooling or similar
|
139 |
-
|
140 |
-
if not hasattr(output, 'logits'):
|
141 |
-
# If `model_unicoil` is an `AutoModel` without a classification head,
|
142 |
-
# we need to add a way to get per-token scores.
|
143 |
-
# This is where a custom model head or a specific model class would be needed.
|
144 |
-
# For `castorini/unicoil-msmarco-passage`, it *is* an MLM variant.
|
145 |
-
# So, `output.logits` *should* be available.
|
146 |
-
return "UNICOIL model output structure not as expected. 'logits' not found."
|
147 |
-
|
148 |
-
# UNICOIL's output is also typically per-token scores from the MLM head.
|
149 |
-
# For UNICOIL, the weights are often taken directly from the logits after pooling.
|
150 |
-
# Unlike SPLADE's log(1+ReLU), UNICOIL's approach can be simpler,
|
151 |
-
# sometimes just taking the maximum of logits (or similar pooling).
|
152 |
-
# A common binarization for UNICOIL is based on the sign of the re-weighted scores.
|
153 |
-
|
154 |
-
# Let's mimic a common UNICOIL interpretation for obtaining sparse weights
|
155 |
-
# from the logits. The weights are usually sparse and positive.
|
156 |
-
# We can apply a threshold for binarization.
|
157 |
-
|
158 |
-
# This is a simplification; actual UNICOIL might have specific layers.
|
159 |
-
# For `castorini/unicoil-msmarco-passage`, it uses the `log(1+exp(logits))` formulation
|
160 |
-
# followed by max pooling, then often binarization based on a threshold.
|
161 |
-
|
162 |
-
# Applying a common interpretation of UNICOIL-like score generation for sparse weights:
|
163 |
-
# Instead of `log(1+ReLU(logits))`, it often uses `torch.log(1 + torch.exp(output.logits))`.
|
164 |
-
# This is essentially the softplus function, which makes values positive and sparse.
|
165 |
-
|
166 |
-
# Get the sparse weights using the UNICOIL-like transformation
|
167 |
-
sparse_weights = torch.max(torch.log(1 + torch.exp(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1)[0].squeeze()
|
168 |
-
|
169 |
-
# --- Binarization Step for UNICOIL ---
|
170 |
-
# For true "binary sparse", we threshold these sparse weights.
|
171 |
-
# A common approach is to simply take any non-zero value as 1, and zero as 0.
|
172 |
-
# Or, define a small threshold for binarization if values are very small but non-zero.
|
173 |
-
# For simplicity, let's treat anything above a very small epsilon as 1.
|
174 |
-
|
175 |
-
# Convert to binary: 1 if weight > epsilon, else 0
|
176 |
-
threshold = 1e-6 # Define a small threshold for binarization
|
177 |
-
binary_sparse_vector = (sparse_weights > threshold).int()
|
178 |
-
|
179 |
-
# Get indices of the '1's in the binary vector
|
180 |
-
binary_indices = torch.nonzero(binary_sparse_vector).squeeze().cpu().tolist()
|
181 |
-
|
182 |
-
if not isinstance(binary_indices, list):
|
183 |
-
binary_indices = [binary_indices] if binary_indices.numel() > 0 else []
|
184 |
-
|
185 |
-
# Map token IDs back to terms for the binary representation
|
186 |
-
binary_terms = {}
|
187 |
-
for token_id in binary_indices:
|
188 |
-
decoded_token = tokenizer_unicoil.decode([token_id])
|
189 |
-
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
|
190 |
-
binary_terms[decoded_token] = 1 # Value is always 1 for binary
|
191 |
-
|
192 |
-
sorted_binary_terms = sorted(binary_terms.items(), key=lambda item: item[0]) # Sort by term for consistent display
|
193 |
-
|
194 |
-
formatted_output = "UNICOIL Binary Sparse Representation (Activated Terms):\n"
|
195 |
-
if not sorted_binary_terms:
|
196 |
-
formatted_output += "No significant terms activated for this input.\n"
|
197 |
-
else:
|
198 |
-
# Display up to 50 activated terms for readability
|
199 |
-
for i, (term, _) in enumerate(sorted_binary_terms):
|
200 |
-
if i >= 50:
|
201 |
-
break
|
202 |
-
formatted_output += f"- **{term}**\n" # Only show term, as weight is always 1
|
203 |
-
if len(sorted_binary_terms) > 50:
|
204 |
formatted_output += f"...and {len(sorted_binary_terms) - 50} more terms.\n"
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
210 |
|
211 |
return formatted_output
|
212 |
|
213 |
|
|
|
|
|
214 |
# --- Unified Prediction Function for Gradio ---
|
215 |
def predict_representation(model_choice, text):
|
216 |
if model_choice == "SPLADE":
|
|
|
86 |
return "UNICOIL model is not loaded. Please check the console for loading errors."
|
87 |
|
88 |
inputs = tokenizer_unicoil(text, return_tensors="pt", padding=True, truncation=True)
|
89 |
+
input_ids = inputs["input_ids"]
|
90 |
+
attention_mask = inputs["attention_mask"]
|
91 |
inputs = {k: v.to(model_unicoil.device) for k, v in inputs.items()}
|
92 |
|
93 |
with torch.no_grad():
|
94 |
+
output = model_unicoil(**inputs)
|
95 |
+
|
96 |
+
if not hasattr(output, "logits"):
|
97 |
+
return "UNICOIL model output structure not as expected. 'logits' not found."
|
98 |
+
|
99 |
+
logits = output.logits.squeeze(0) # [seq_len, vocab_size]
|
100 |
+
token_ids = input_ids.squeeze(0) # [seq_len]
|
101 |
+
mask = attention_mask.squeeze(0) # [seq_len]
|
102 |
+
|
103 |
+
transformed_scores = torch.log(1 + torch.exp(logits)) # softplus
|
104 |
+
token_scores = transformed_scores[range(len(token_ids)), token_ids] # only scores for input tokens
|
105 |
+
token_scores = token_scores * mask # mask out padding
|
106 |
+
|
107 |
+
# Binarize: threshold scores > 0.5 (tune as needed)
|
108 |
+
binary_mask = (token_scores > 0.5)
|
109 |
+
activated_token_ids = token_ids[binary_mask].cpu().tolist()
|
110 |
+
|
111 |
+
# Map token ids to strings
|
112 |
+
binary_terms = {}
|
113 |
+
for token_id in activated_token_ids:
|
114 |
+
decoded_token = tokenizer_unicoil.decode([token_id])
|
115 |
+
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
|
116 |
+
binary_terms[decoded_token] = 1
|
117 |
+
|
118 |
+
sorted_binary_terms = sorted(binary_terms.items(), key=lambda item: item[0])
|
119 |
+
|
120 |
+
formatted_output = "UNICOIL Binary Sparse Representation (Activated Terms):\n"
|
121 |
+
if not sorted_binary_terms:
|
122 |
+
formatted_output += "No significant terms activated for this input.\n"
|
123 |
+
else:
|
124 |
+
for i, (term, _) in enumerate(sorted_binary_terms):
|
125 |
+
if i >= 50:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
formatted_output += f"...and {len(sorted_binary_terms) - 50} more terms.\n"
|
127 |
+
break
|
128 |
+
formatted_output += f"- **{term}**\n"
|
129 |
+
|
130 |
+
formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
|
131 |
+
formatted_output += f"Total activated terms: {len(sorted_binary_terms)}\n"
|
132 |
+
formatted_output += f"Sparsity: {1 - (len(sorted_binary_terms) / tokenizer_unicoil.vocab_size):.2%}\n"
|
133 |
|
134 |
return formatted_output
|
135 |
|
136 |
|
137 |
+
|
138 |
+
|
139 |
# --- Unified Prediction Function for Gradio ---
|
140 |
def predict_representation(model_choice, text):
|
141 |
if model_choice == "SPLADE":
|