Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from diffusers import AutoencoderKLWan, WanPipeline | |
from diffusers.utils import export_to_video | |
import spaces # ZeroGPU integration | |
# This decorator will request a GPU during initialization | |
def load_pipeline(): | |
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" | |
print("Loading model. This may take several minutes...") | |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) | |
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) | |
pipe.to("cuda") | |
print("Model loaded successfully.") | |
return pipe | |
# Preload the model during startup | |
PIPELINE = load_pipeline() | |
def generate_video(prompt, negative_prompt=""): | |
# Use the globally preloaded PIPELINE | |
output = PIPELINE( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=480, # 480p height | |
width=832, # Suitable width for 480p videos | |
num_frames=81, # Adjust number of frames for desired video length | |
guidance_scale=5.0 # Recommended guidance scale for the 1.3B model | |
).frames[0] | |
video_path = "output.mp4" | |
export_to_video(output, video_path, fps=15) | |
return video_path | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_video, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Enter your video prompt here"), | |
gr.Textbox(label="Negative Prompt", placeholder="Optional negative prompt", value="") | |
], | |
outputs=gr.Video(label="Generated Video"), | |
title="Wan2.1-T2V-1.3B Video Generator", | |
description="Generate 480p videos using the Wan2.1-T2V-1.3B diffusers pipeline with ZeroGPU support." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |