File size: 1,762 Bytes
7d2f6d5
 
 
 
 
 
50d19ca
 
7d2f6d5
50d19ca
7d2f6d5
 
 
50d19ca
 
 
 
 
 
 
 
 
7d2f6d5
 
 
50d19ca
 
 
7d2f6d5
 
 
 
 
 
50d19ca
7d2f6d5
 
 
 
 
 
 
 
 
 
 
 
50d19ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
import torch
from diffusers import AutoencoderKLWan, WanPipeline
from diffusers.utils import export_to_video
import spaces  # ZeroGPU integration

@spaces.GPU  # This decorator will request a GPU during initialization
def load_pipeline():
    model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
    print("Loading model. This may take several minutes...")
    vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
    pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
    pipe.to("cuda")
    print("Model loaded successfully.")
    return pipe

# Preload the model during startup
PIPELINE = load_pipeline()

def generate_video(prompt, negative_prompt=""):
    # Use the globally preloaded PIPELINE
    output = PIPELINE(
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=480,        # 480p height
        width=832,         # Suitable width for 480p videos
        num_frames=81,     # Adjust number of frames for desired video length
        guidance_scale=5.0 # Recommended guidance scale for the 1.3B model
    ).frames[0]
    
    video_path = "output.mp4"
    export_to_video(output, video_path, fps=15)
    return video_path

# Create the Gradio interface
iface = gr.Interface(
    fn=generate_video,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your video prompt here"),
        gr.Textbox(label="Negative Prompt", placeholder="Optional negative prompt", value="")
    ],
    outputs=gr.Video(label="Generated Video"),
    title="Wan2.1-T2V-1.3B Video Generator",
    description="Generate 480p videos using the Wan2.1-T2V-1.3B diffusers pipeline with ZeroGPU support."
)

if __name__ == "__main__":
    iface.launch()