Update app.py
Browse files
app.py
CHANGED
@@ -4,31 +4,35 @@ from diffusers import AutoencoderKLWan, WanPipeline
|
|
4 |
from diffusers.utils import export_to_video
|
5 |
import spaces # ZeroGPU integration
|
6 |
|
7 |
-
@spaces.GPU #
|
8 |
-
def
|
9 |
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
10 |
-
|
11 |
-
# Load the VAE and pipeline with proper data types
|
12 |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
13 |
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
14 |
pipe.to("cuda")
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
prompt=prompt,
|
19 |
negative_prompt=negative_prompt,
|
20 |
height=480, # 480p height
|
21 |
-
width=832, # Suitable width for 480p
|
22 |
-
num_frames=81, # Adjust
|
23 |
-
guidance_scale=5.0 # Recommended for
|
24 |
).frames[0]
|
25 |
|
26 |
-
# Export the generated frames to a video file
|
27 |
video_path = "output.mp4"
|
28 |
export_to_video(output, video_path, fps=15)
|
29 |
return video_path
|
30 |
|
31 |
-
# Create
|
32 |
iface = gr.Interface(
|
33 |
fn=generate_video,
|
34 |
inputs=[
|
@@ -41,4 +45,4 @@ iface = gr.Interface(
|
|
41 |
)
|
42 |
|
43 |
if __name__ == "__main__":
|
44 |
-
iface.launch()
|
|
|
4 |
from diffusers.utils import export_to_video
|
5 |
import spaces # ZeroGPU integration
|
6 |
|
7 |
+
@spaces.GPU # This decorator will request a GPU during initialization
|
8 |
+
def load_pipeline():
|
9 |
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
10 |
+
print("Loading model. This may take several minutes...")
|
|
|
11 |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
12 |
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
13 |
pipe.to("cuda")
|
14 |
+
print("Model loaded successfully.")
|
15 |
+
return pipe
|
16 |
+
|
17 |
+
# Preload the model during startup
|
18 |
+
PIPELINE = load_pipeline()
|
19 |
+
|
20 |
+
def generate_video(prompt, negative_prompt=""):
|
21 |
+
# Use the globally preloaded PIPELINE
|
22 |
+
output = PIPELINE(
|
23 |
prompt=prompt,
|
24 |
negative_prompt=negative_prompt,
|
25 |
height=480, # 480p height
|
26 |
+
width=832, # Suitable width for 480p videos
|
27 |
+
num_frames=81, # Adjust number of frames for desired video length
|
28 |
+
guidance_scale=5.0 # Recommended guidance scale for the 1.3B model
|
29 |
).frames[0]
|
30 |
|
|
|
31 |
video_path = "output.mp4"
|
32 |
export_to_video(output, video_path, fps=15)
|
33 |
return video_path
|
34 |
|
35 |
+
# Create the Gradio interface
|
36 |
iface = gr.Interface(
|
37 |
fn=generate_video,
|
38 |
inputs=[
|
|
|
45 |
)
|
46 |
|
47 |
if __name__ == "__main__":
|
48 |
+
iface.launch()
|