Spaces:
Sleeping
Sleeping
File size: 9,138 Bytes
239a968 70ce6b1 cd900c5 fe6b66c 70ce6b1 fe6b66c 4afc141 70ce6b1 4afc141 70ce6b1 4afc141 70ce6b1 4afc141 70ce6b1 4afc141 70ce6b1 4afc141 70ce6b1 4afc141 9d64e69 4afc141 9d64e69 3cc85b8 c96a489 4afc141 c96a489 4afc141 c96a489 4afc141 c96a489 4afc141 c96a489 4afc141 c96a489 4afc141 c96a489 4afc141 c96a489 9d64e69 3624f82 4afc141 9d64e69 3624f82 9d64e69 3624f82 4afc141 3624f82 9d64e69 3624f82 93ddbae 9d64e69 4afc141 9d64e69 93ddbae 4afc141 834f0ff 4afc141 70ce6b1 4afc141 70ce6b1 4afc141 70ce6b1 cd900c5 70ce6b1 4afc141 93ddbae 70ce6b1 5ebe61a 93ddbae 5ebe61a 93ddbae 5ebe61a 93ddbae 76dedd8 cd900c5 76dedd8 5ebe61a 70ce6b1 76dedd8 93ddbae 70ce6b1 cd900c5 76dedd8 834f0ff 4afc141 a15a709 fe6b66c 70ce6b1 4afc141 70ce6b1 4afc141 fe6b66c 70ce6b1 4afc141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import gradio as gr
import torch
from transformers import pipeline as hf_pipeline, AutoModelForSequenceClassification, AutoTokenizer
from PIL import Image
import pytesseract
import io
# ——— 1) Emotion Pipeline ————————————————————————————————————————————————
emotion_pipeline = hf_pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
top_k=None,
truncation=True
)
def get_emotion_profile(text):
"""
Returns a dict of emotion scores for the input text.
"""
results = emotion_pipeline(text)
# Some pipelines return a list of lists
if isinstance(results, list) and isinstance(results[0], list):
results = results[0]
return {r["label"].lower(): round(r["score"], 3) for r in results}
# apology keywords for pleading concern
APOLOGY_KEYWORDS = ["sorry", "apolog", "forgive"]
# ——— 2) Abuse-Patterns Model ——————————————————————————————————————————————
model_name = "SamanthaStorm/tether-multilabel-v3"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
LABELS = [
"blame shifting", "contradictory statements", "control", "dismissiveness",
"gaslighting", "guilt tripping", "insults", "obscure language",
"projection", "recovery phase", "threat"
]
THRESHOLDS = {
"blame shifting": 0.28,
"contradictory statements": 0.27,
"control": 0.08,
"dismissiveness": 0.32,
"gaslighting": 0.27,
"guilt tripping": 0.31,
"insults": 0.10,
"obscure language": 0.55,
"projection": 0.09,
"recovery phase": 0.33,
"threat": 0.15
}
# ——— 3) Emotional-Tone Tagging —————————————————————————————————————————————
def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
"""
Assigns one of 18 nuanced tone categories based on emotion scores, patterns, and text.
"""
sadness = emotion_profile.get("sadness", 0)
joy = emotion_profile.get("joy", 0)
neutral = emotion_profile.get("neutral", 0)
disgust = emotion_profile.get("disgust", 0)
anger = emotion_profile.get("anger", 0)
fear = emotion_profile.get("fear", 0)
surprise = emotion_profile.get("surprise", 0)
def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
if "support" in text_lower or "hope" in text_lower or "grace" in text_lower:
return "supportive"
if (
sadness > 0.4 and
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"])
):
return "performative regret"
# 2. Coercive Warmth
if (
(joy > 0.3 or sadness > 0.4) and
any(p in patterns for p in ["control", "gaslighting"])
):
return "coercive warmth"
# 3. Cold Invalidation
if (
(neutral + disgust) > 0.5 and
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"])
):
return "cold invalidation"
# 4. Genuine Vulnerability
if (
(sadness + fear) > 0.5 and
all(p == "recovery phase" for p in patterns)
):
return "genuine vulnerability"
# 5. Emotional Threat
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["control", "threat", "insults", "dismissiveness"])
):
return "emotional threat"
# 6. Weaponized Sadness
if (
sadness > 0.6 and
any(p in patterns for p in ["guilt tripping", "projection"])
):
return "weaponized sadness"
# 7. Toxic Resignation
if (
neutral > 0.5 and
any(p in patterns for p in ["dismissiveness", "obscure language"])
):
return "toxic resignation"
# 8. Indignant Reproach
if (
anger > 0.5 and
any(p in patterns for p in ["guilt tripping", "contradictory statements"])
):
return "indignant reproach"
# 9. Confrontational
if anger > 0.6 and patterns:
return "confrontational"
# 10. Passive Aggression
if (
neutral > 0.6 and
any(p in patterns for p in ["dismissiveness", "projection"])
):
return "passive aggression"
# 11. Sarcastic Mockery
if joy > 0.3 and "insults" in patterns:
return "sarcastic mockery"
# 12. Menacing Threat
if fear > 0.3 and "threat" in patterns:
return "menacing threat"
# 13. Pleading Concern
if (
sadness > 0.3 and
any(k in text_lower for k in APOLOGY_KEYWORDS) and
not patterns
):
return "pleading concern"
# 14. Fear-mongering
if (fear + disgust) > 0.5 and "projection" in patterns:
return "fear-mongering"
# 15. Disbelieving Accusation
if surprise > 0.3 and "blame shifting" in patterns:
return "disbelieving accusation"
# 16. Empathetic Solidarity
if joy > 0.2 and sadness > 0.2 and not patterns:
return "empathetic solidarity"
# 17. Assertive Boundary
if anger > 0.4 and "control" in patterns:
return "assertive boundary"
# 18. Stonewalling
if neutral > 0.7 and not patterns:
return "stonewalling"
return None
# ——— 4) Single-message Analysis ———————————————————————————————————————————
def analyze_message(text):
text_lower = text.lower()
# 1) Emotion
emotion_profile = get_emotion_profile(text)
# 2) Patterns
toks = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = model(**toks).logits.squeeze(0)
scores = torch.sigmoid(logits).cpu().numpy()
active_patterns = [lab for lab, sc in zip(LABELS, scores) if sc >= THRESHOLDS[lab]]
# append recovery-phase if apology
if any(k in text_lower for k in APOLOGY_KEYWORDS) and "recovery phase" not in active_patterns:
active_patterns.append("recovery phase")
# 3) Tone
tone_tag = get_emotional_tone_tag(emotion_profile, active_patterns, text_lower)
return {
"emotion_profile": emotion_profile,
"active_patterns": active_patterns,
"tone_tag": tone_tag
}
# ——— 5) Composite Wrapper ————————————————————————————————————————————————
def analyze_composite(uploaded_file, *texts):
outputs = []
# 1) File upload
if uploaded_file is not None:
# uploaded_file may be a file-like with .read(), or just a path string
try:
raw = uploaded_file.read()
except Exception:
# fall back to treating uploaded_file as a filesystem path
with open(uploaded_file, "rb") as f:
raw = f.read()
# get the filename (or just use the string if no .name attr)
name = (
uploaded_file.name.lower()
if hasattr(uploaded_file, "name")
else uploaded_file.lower()
)
# now branch on extension
if name.endswith((".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")):
img = Image.open(io.BytesIO(raw))
content = pytesseract.image_to_string(img)
else:
try:
content = raw.decode("utf-8")
except UnicodeDecodeError:
content = raw.decode("latin-1")
r = analyze_message(content)
outputs.append(
"── Uploaded File ──\n"
f"Emotion Profile : {r['emotion_profile']}\n"
f"Active Patterns : {r['active_patterns']}\n"
f"Emotional Tone : {r['tone_tag']}\n"
)
# 2) Text‐box inputs…
for idx, txt in enumerate(texts, start=1):
if not txt:
continue
r = analyze_message(txt)
outputs.append(
f"── Message {idx} ──\n"
f"Emotion Profile : {r['emotion_profile']}\n"
f"Active Patterns : {r['active_patterns']}\n"
f"Emotional Tone : {r['tone_tag']}\n"
)
if not outputs:
return "Please enter at least one message."
return "\n".join(outputs)
# ——— 6) Gradio Interface ————————————————————————————————————————————————
message_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(1)]
iface = gr.Interface(
fn=analyze_composite,
inputs=[gr.File(file_types=[".txt", ".png", ".jpg", ".jpeg"], label="Upload text or image")] + message_inputs,
outputs=gr.Textbox(label="Analysis"),
title="Tether Analyzer (extended tone tags)",
description="Emotion profiling, pattern tags, and a wide set of nuanced tone categories—no abuse score or DARVO."
)
if __name__ == "__main__":
iface.launch() |