File size: 9,138 Bytes
239a968
70ce6b1
 
cd900c5
 
 
fe6b66c
70ce6b1
fe6b66c
 
 
 
 
 
 
 
4afc141
 
 
70ce6b1
4afc141
70ce6b1
 
 
 
4afc141
 
70ce6b1
4afc141
70ce6b1
4afc141
70ce6b1
 
 
 
 
 
 
 
 
4afc141
 
 
 
 
 
 
 
 
 
 
70ce6b1
 
4afc141
9d64e69
 
4afc141
9d64e69
 
 
 
 
 
 
 
 
3cc85b8
 
 
c96a489
4afc141
 
c96a489
 
 
 
 
4afc141
 
c96a489
 
 
 
 
4afc141
 
c96a489
 
 
 
 
4afc141
 
c96a489
 
 
 
 
4afc141
 
c96a489
 
 
 
 
4afc141
 
c96a489
 
 
 
 
4afc141
 
c96a489
 
9d64e69
3624f82
 
4afc141
 
9d64e69
3624f82
9d64e69
 
 
 
 
 
3624f82
4afc141
 
3624f82
 
9d64e69
 
3624f82
 
93ddbae
9d64e69
 
 
 
 
 
4afc141
 
 
9d64e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ddbae
 
4afc141
834f0ff
4afc141
 
70ce6b1
4afc141
70ce6b1
 
 
 
4afc141
 
 
 
 
 
70ce6b1
cd900c5
 
 
 
70ce6b1
4afc141
93ddbae
70ce6b1
5ebe61a
 
93ddbae
5ebe61a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ddbae
 
 
 
 
 
 
 
5ebe61a
93ddbae
76dedd8
 
cd900c5
 
 
76dedd8
5ebe61a
 
70ce6b1
76dedd8
 
 
93ddbae
70ce6b1
cd900c5
 
 
76dedd8
 
 
 
834f0ff
4afc141
a15a709
fe6b66c
70ce6b1
4afc141
70ce6b1
4afc141
 
fe6b66c
 
70ce6b1
4afc141
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import gradio as gr
import torch
from transformers import pipeline as hf_pipeline, AutoModelForSequenceClassification, AutoTokenizer
from PIL import Image
import pytesseract
import io

# ——— 1) Emotion Pipeline ————————————————————————————————————————————————
emotion_pipeline = hf_pipeline(
    "text-classification",
    model="j-hartmann/emotion-english-distilroberta-base",
    top_k=None,
    truncation=True
)

def get_emotion_profile(text):
    """
    Returns a dict of emotion scores for the input text.
    """
    results = emotion_pipeline(text)
    # Some pipelines return a list of lists
    if isinstance(results, list) and isinstance(results[0], list):
        results = results[0]
    return {r["label"].lower(): round(r["score"], 3) for r in results}

# apology keywords for pleading concern
APOLOGY_KEYWORDS = ["sorry", "apolog", "forgive"]

# ——— 2) Abuse-Patterns Model ——————————————————————————————————————————————
model_name = "SamanthaStorm/tether-multilabel-v3"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)

LABELS = [
    "blame shifting", "contradictory statements", "control", "dismissiveness",
    "gaslighting", "guilt tripping", "insults", "obscure language",
    "projection", "recovery phase", "threat"
]

THRESHOLDS = {
    "blame shifting": 0.28,
    "contradictory statements": 0.27,
    "control": 0.08,
    "dismissiveness": 0.32,
    "gaslighting": 0.27,
    "guilt tripping": 0.31,
    "insults": 0.10,
    "obscure language": 0.55,
    "projection": 0.09,
    "recovery phase": 0.33,
    "threat": 0.15
}

# ——— 3) Emotional-Tone Tagging —————————————————————————————————————————————
def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
    """
    Assigns one of 18 nuanced tone categories based on emotion scores, patterns, and text.
    """
    sadness  = emotion_profile.get("sadness",  0)
    joy      = emotion_profile.get("joy",      0)
    neutral  = emotion_profile.get("neutral",  0)
    disgust  = emotion_profile.get("disgust",  0)
    anger    = emotion_profile.get("anger",    0)
    fear     = emotion_profile.get("fear",     0)
    surprise = emotion_profile.get("surprise", 0)

def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
    if "support" in text_lower or "hope" in text_lower or "grace" in text_lower:
        return "supportive"
    if (
        sadness > 0.4 and
        any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"])
    ):
        return "performative regret"

    # 2. Coercive Warmth
    if (
        (joy > 0.3 or sadness > 0.4) and
        any(p in patterns for p in ["control", "gaslighting"])
    ):
        return "coercive warmth"

    # 3. Cold Invalidation
    if (
        (neutral + disgust) > 0.5 and
        any(p in patterns for p in ["dismissiveness", "projection", "obscure language"])
    ):
        return "cold invalidation"

    # 4. Genuine Vulnerability
    if (
        (sadness + fear) > 0.5 and
        all(p == "recovery phase" for p in patterns)
    ):
        return "genuine vulnerability"

    # 5. Emotional Threat
    if (
        (anger + disgust) > 0.5 and
        any(p in patterns for p in ["control", "threat", "insults", "dismissiveness"])
    ):
        return "emotional threat"

    # 6. Weaponized Sadness
    if (
        sadness > 0.6 and
        any(p in patterns for p in ["guilt tripping", "projection"])
    ):
        return "weaponized sadness"

    # 7. Toxic Resignation
    if (
        neutral > 0.5 and
        any(p in patterns for p in ["dismissiveness", "obscure language"])
    ):
        return "toxic resignation"

    # 8. Indignant Reproach
    if (
        anger > 0.5 and
        any(p in patterns for p in ["guilt tripping", "contradictory statements"])
    ):
        return "indignant reproach"

    # 9. Confrontational
    if anger > 0.6 and patterns:
        return "confrontational"

    # 10. Passive Aggression
    if (
        neutral > 0.6 and
        any(p in patterns for p in ["dismissiveness", "projection"])
    ):
        return "passive aggression"

    # 11. Sarcastic Mockery
    if joy > 0.3 and "insults" in patterns:
        return "sarcastic mockery"

    # 12. Menacing Threat
    if fear > 0.3 and "threat" in patterns:
        return "menacing threat"

    # 13. Pleading Concern
    if (
        sadness > 0.3 and
        any(k in text_lower for k in APOLOGY_KEYWORDS) and
        not patterns
    ):
        return "pleading concern"

    # 14. Fear-mongering
    if (fear + disgust) > 0.5 and "projection" in patterns:
        return "fear-mongering"

    # 15. Disbelieving Accusation
    if surprise > 0.3 and "blame shifting" in patterns:
        return "disbelieving accusation"

    # 16. Empathetic Solidarity
    if joy > 0.2 and sadness > 0.2 and not patterns:
        return "empathetic solidarity"

    # 17. Assertive Boundary
    if anger > 0.4 and "control" in patterns:
        return "assertive boundary"

    # 18. Stonewalling
    if neutral > 0.7 and not patterns:
        return "stonewalling"

    return None

# ——— 4) Single-message Analysis ———————————————————————————————————————————
def analyze_message(text):
    text_lower = text.lower()
    # 1) Emotion
    emotion_profile = get_emotion_profile(text)
    # 2) Patterns
    toks = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        logits = model(**toks).logits.squeeze(0)
    scores = torch.sigmoid(logits).cpu().numpy()
    active_patterns = [lab for lab, sc in zip(LABELS, scores) if sc >= THRESHOLDS[lab]]
    # append recovery-phase if apology
    if any(k in text_lower for k in APOLOGY_KEYWORDS) and "recovery phase" not in active_patterns:
        active_patterns.append("recovery phase")
    # 3) Tone
    tone_tag = get_emotional_tone_tag(emotion_profile, active_patterns, text_lower)
    return {
        "emotion_profile": emotion_profile,
        "active_patterns": active_patterns,
        "tone_tag": tone_tag
    }

# ——— 5) Composite Wrapper ————————————————————————————————————————————————
def analyze_composite(uploaded_file, *texts):
    outputs = []

    # 1) File upload
    if uploaded_file is not None:
        # uploaded_file may be a file-like with .read(), or just a path string
        try:
            raw = uploaded_file.read()
        except Exception:
            # fall back to treating uploaded_file as a filesystem path
            with open(uploaded_file, "rb") as f:
                raw = f.read()

        # get the filename (or just use the string if no .name attr)
        name = (
            uploaded_file.name.lower()
            if hasattr(uploaded_file, "name")
            else uploaded_file.lower()
        )

        # now branch on extension
        if name.endswith((".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")):
            img = Image.open(io.BytesIO(raw))
            content = pytesseract.image_to_string(img)
        else:
            try:
                content = raw.decode("utf-8")
            except UnicodeDecodeError:
                content = raw.decode("latin-1")

        r = analyze_message(content)
        outputs.append(
            "── Uploaded File ──\n"
            f"Emotion Profile : {r['emotion_profile']}\n"
            f"Active Patterns : {r['active_patterns']}\n"
            f"Emotional Tone  : {r['tone_tag']}\n"
        )

    # 2) Text‐box inputs…
    for idx, txt in enumerate(texts, start=1):
        if not txt:
            continue
        r = analyze_message(txt)
        outputs.append(
            f"── Message {idx} ──\n"
            f"Emotion Profile : {r['emotion_profile']}\n"
            f"Active Patterns : {r['active_patterns']}\n"
            f"Emotional Tone  : {r['tone_tag']}\n"
        )
    if not outputs:
        return "Please enter at least one message."
    return "\n".join(outputs)

# ——— 6) Gradio Interface ————————————————————————————————————————————————
message_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(1)]
iface = gr.Interface(
    fn=analyze_composite,
    inputs=[gr.File(file_types=[".txt", ".png", ".jpg", ".jpeg"], label="Upload text or image")] + message_inputs,
    outputs=gr.Textbox(label="Analysis"),
    title="Tether Analyzer (extended tone tags)",
    description="Emotion profiling, pattern tags, and a wide set of nuanced tone categories—no abuse score or DARVO."
)

if __name__ == "__main__":
    iface.launch()