Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,15 +14,21 @@ emotion_pipeline = hf_pipeline(
|
|
14 |
)
|
15 |
|
16 |
def get_emotion_profile(text):
|
|
|
|
|
|
|
17 |
results = emotion_pipeline(text)
|
|
|
18 |
if isinstance(results, list) and isinstance(results[0], list):
|
19 |
results = results[0]
|
20 |
return {r["label"].lower(): round(r["score"], 3) for r in results}
|
21 |
|
|
|
|
|
22 |
|
23 |
-
# ——— 2) Abuse-
|
24 |
model_name = "SamanthaStorm/tether-multilabel-v3"
|
25 |
-
model
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
27 |
|
28 |
LABELS = [
|
@@ -32,36 +38,23 @@ LABELS = [
|
|
32 |
]
|
33 |
|
34 |
THRESHOLDS = {
|
35 |
-
"blame shifting": 0.28,
|
36 |
-
"
|
37 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
}
|
39 |
|
40 |
-
# ——— 3) Emotional-
|
41 |
-
def get_emotional_tone_tag(emotion_profile, patterns):
|
42 |
-
# unpack emotion scores
|
43 |
-
sadness = emotion_profile.get("sadness", 0)
|
44 |
-
joy = emotion_profile.get("joy", 0)
|
45 |
-
neutral = emotion_profile.get("neutral", 0)
|
46 |
-
disgust = emotion_profile.get("disgust", 0)
|
47 |
-
anger = emotion_profile.get("anger", 0)
|
48 |
-
fear = emotion_profile.get("fear", 0)
|
49 |
-
|
50 |
def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
|
51 |
"""
|
52 |
-
18
|
53 |
-
1–7 = original nuanced tones
|
54 |
-
8 = indignant reproach
|
55 |
-
9 = confrontational
|
56 |
-
10 = passive aggression
|
57 |
-
11 = sarcastic mockery
|
58 |
-
12 = menacing threat
|
59 |
-
13 = pleading concern
|
60 |
-
14 = fear-mongering
|
61 |
-
15 = disbelieving accusation
|
62 |
-
16 = empathetic solidarity
|
63 |
-
17 = assertive boundary
|
64 |
-
18 = stonewalling
|
65 |
"""
|
66 |
sadness = emotion_profile.get("sadness", 0)
|
67 |
joy = emotion_profile.get("joy", 0)
|
@@ -73,57 +66,57 @@ def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
|
|
73 |
|
74 |
# 1. Performative Regret
|
75 |
if (
|
76 |
-
sadness > 0.4
|
77 |
-
|
78 |
):
|
79 |
return "performative regret"
|
80 |
|
81 |
# 2. Coercive Warmth
|
82 |
if (
|
83 |
-
(joy > 0.3 or sadness > 0.4)
|
84 |
-
|
85 |
):
|
86 |
return "coercive warmth"
|
87 |
|
88 |
# 3. Cold Invalidation
|
89 |
if (
|
90 |
-
(neutral + disgust) > 0.5
|
91 |
-
|
92 |
):
|
93 |
return "cold invalidation"
|
94 |
|
95 |
# 4. Genuine Vulnerability
|
96 |
if (
|
97 |
-
(sadness + fear) > 0.5
|
98 |
-
|
99 |
):
|
100 |
return "genuine vulnerability"
|
101 |
|
102 |
# 5. Emotional Threat
|
103 |
if (
|
104 |
-
(anger + disgust) > 0.5
|
105 |
-
|
106 |
):
|
107 |
return "emotional threat"
|
108 |
|
109 |
# 6. Weaponized Sadness
|
110 |
if (
|
111 |
-
sadness > 0.6
|
112 |
-
|
113 |
):
|
114 |
return "weaponized sadness"
|
115 |
|
116 |
# 7. Toxic Resignation
|
117 |
if (
|
118 |
-
neutral > 0.5
|
119 |
-
|
120 |
):
|
121 |
return "toxic resignation"
|
122 |
|
123 |
# 8. Indignant Reproach
|
124 |
if (
|
125 |
-
anger > 0.5
|
126 |
-
|
127 |
):
|
128 |
return "indignant reproach"
|
129 |
|
@@ -133,8 +126,8 @@ def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
|
|
133 |
|
134 |
# 10. Passive Aggression
|
135 |
if (
|
136 |
-
neutral > 0.6
|
137 |
-
|
138 |
):
|
139 |
return "passive aggression"
|
140 |
|
@@ -148,9 +141,9 @@ def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
|
|
148 |
|
149 |
# 13. Pleading Concern
|
150 |
if (
|
151 |
-
sadness > 0.3
|
152 |
-
|
153 |
-
|
154 |
):
|
155 |
return "pleading concern"
|
156 |
|
@@ -176,45 +169,31 @@ def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
|
|
176 |
|
177 |
return None
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
# ——— 4) Single-message analysis —————————————————————————————————————————————
|
182 |
def analyze_message(text):
|
183 |
-
|
|
|
184 |
emotion_profile = get_emotion_profile(text)
|
185 |
-
|
186 |
-
# 2) abuse-pattern classification
|
187 |
toks = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
188 |
with torch.no_grad():
|
189 |
logits = model(**toks).logits.squeeze(0)
|
190 |
scores = torch.sigmoid(logits).cpu().numpy()
|
191 |
-
|
192 |
-
#
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
# 4) add recovery-phase on apology keywords
|
199 |
-
low = text.lower()
|
200 |
-
if any(k in low for k in ["sorry", "apolog", "forgive"]):
|
201 |
-
if "recovery phase" not in active_patterns:
|
202 |
-
active_patterns.append("recovery phase")
|
203 |
-
|
204 |
-
# 5) tone tagging with detailed rules
|
205 |
-
tone_tag = get_emotional_tone_tag(emotion_profile, active_patterns)
|
206 |
-
|
207 |
return {
|
208 |
"emotion_profile": emotion_profile,
|
209 |
"active_patterns": active_patterns,
|
210 |
"tone_tag": tone_tag
|
211 |
}
|
212 |
|
213 |
-
|
214 |
-
# ——— 5) Composite wrapper (handles uploads + text boxes) ——————————————————————————
|
215 |
def analyze_composite(uploaded_file, *texts):
|
216 |
outputs = []
|
217 |
-
|
218 |
# file upload
|
219 |
if uploaded_file is not None:
|
220 |
raw = uploaded_file.read()
|
@@ -227,7 +206,6 @@ def analyze_composite(uploaded_file, *texts):
|
|
227 |
content = raw.decode("utf-8")
|
228 |
except UnicodeDecodeError:
|
229 |
content = raw.decode("latin-1")
|
230 |
-
|
231 |
r = analyze_message(content)
|
232 |
outputs.append(
|
233 |
"── Uploaded File ──\n"
|
@@ -235,7 +213,6 @@ def analyze_composite(uploaded_file, *texts):
|
|
235 |
f"Active Patterns : {r['active_patterns']}\n"
|
236 |
f"Emotional Tone : {r['tone_tag']}\n"
|
237 |
)
|
238 |
-
|
239 |
# text inputs
|
240 |
for idx, txt in enumerate(texts, start=1):
|
241 |
if not txt:
|
@@ -247,25 +224,19 @@ def analyze_composite(uploaded_file, *texts):
|
|
247 |
f"Active Patterns : {r['active_patterns']}\n"
|
248 |
f"Emotional Tone : {r['tone_tag']}\n"
|
249 |
)
|
250 |
-
|
251 |
if not outputs:
|
252 |
return "Please enter at least one message."
|
253 |
-
|
254 |
return "\n".join(outputs)
|
255 |
|
256 |
-
|
257 |
-
# ——— 6) Gradio interface ————————————————————————————————————————————————
|
258 |
message_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
|
259 |
-
|
260 |
iface = gr.Interface(
|
261 |
fn=analyze_composite,
|
262 |
-
inputs=[
|
263 |
-
gr.File(file_types=[".txt", ".png", ".jpg", ".jpeg"], label="Upload text or image")
|
264 |
-
] + message_inputs,
|
265 |
outputs=gr.Textbox(label="Analysis"),
|
266 |
-
title="Tether Analyzer (
|
267 |
-
description="Emotion profiling, pattern tags, and nuanced tone categories—no abuse score or DARVO."
|
268 |
)
|
269 |
|
270 |
if __name__ == "__main__":
|
271 |
-
iface.launch()
|
|
|
14 |
)
|
15 |
|
16 |
def get_emotion_profile(text):
|
17 |
+
"""
|
18 |
+
Returns a dict of emotion scores for the input text.
|
19 |
+
"""
|
20 |
results = emotion_pipeline(text)
|
21 |
+
# Some pipelines return a list of lists
|
22 |
if isinstance(results, list) and isinstance(results[0], list):
|
23 |
results = results[0]
|
24 |
return {r["label"].lower(): round(r["score"], 3) for r in results}
|
25 |
|
26 |
+
# apology keywords for pleading concern
|
27 |
+
APOLOGY_KEYWORDS = ["sorry", "apolog", "forgive"]
|
28 |
|
29 |
+
# ——— 2) Abuse-Patterns Model ——————————————————————————————————————————————
|
30 |
model_name = "SamanthaStorm/tether-multilabel-v3"
|
31 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
32 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
33 |
|
34 |
LABELS = [
|
|
|
38 |
]
|
39 |
|
40 |
THRESHOLDS = {
|
41 |
+
"blame shifting": 0.28,
|
42 |
+
"contradictory statements": 0.27,
|
43 |
+
"control": 0.08,
|
44 |
+
"dismissiveness": 0.32,
|
45 |
+
"gaslighting": 0.27,
|
46 |
+
"guilt tripping": 0.31,
|
47 |
+
"insults": 0.10,
|
48 |
+
"obscure language": 0.55,
|
49 |
+
"projection": 0.09,
|
50 |
+
"recovery phase": 0.33,
|
51 |
+
"threat": 0.15
|
52 |
}
|
53 |
|
54 |
+
# ——— 3) Emotional-Tone Tagging —————————————————————————————————————————————
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def get_emotional_tone_tag(emotion_profile, patterns, text_lower):
|
56 |
"""
|
57 |
+
Assigns one of 18 nuanced tone categories based on emotion scores, patterns, and text.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
"""
|
59 |
sadness = emotion_profile.get("sadness", 0)
|
60 |
joy = emotion_profile.get("joy", 0)
|
|
|
66 |
|
67 |
# 1. Performative Regret
|
68 |
if (
|
69 |
+
sadness > 0.4 and
|
70 |
+
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"])
|
71 |
):
|
72 |
return "performative regret"
|
73 |
|
74 |
# 2. Coercive Warmth
|
75 |
if (
|
76 |
+
(joy > 0.3 or sadness > 0.4) and
|
77 |
+
any(p in patterns for p in ["control", "gaslighting"])
|
78 |
):
|
79 |
return "coercive warmth"
|
80 |
|
81 |
# 3. Cold Invalidation
|
82 |
if (
|
83 |
+
(neutral + disgust) > 0.5 and
|
84 |
+
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"])
|
85 |
):
|
86 |
return "cold invalidation"
|
87 |
|
88 |
# 4. Genuine Vulnerability
|
89 |
if (
|
90 |
+
(sadness + fear) > 0.5 and
|
91 |
+
all(p == "recovery phase" for p in patterns)
|
92 |
):
|
93 |
return "genuine vulnerability"
|
94 |
|
95 |
# 5. Emotional Threat
|
96 |
if (
|
97 |
+
(anger + disgust) > 0.5 and
|
98 |
+
any(p in patterns for p in ["control", "threat", "insults", "dismissiveness"])
|
99 |
):
|
100 |
return "emotional threat"
|
101 |
|
102 |
# 6. Weaponized Sadness
|
103 |
if (
|
104 |
+
sadness > 0.6 and
|
105 |
+
any(p in patterns for p in ["guilt tripping", "projection"])
|
106 |
):
|
107 |
return "weaponized sadness"
|
108 |
|
109 |
# 7. Toxic Resignation
|
110 |
if (
|
111 |
+
neutral > 0.5 and
|
112 |
+
any(p in patterns for p in ["dismissiveness", "obscure language"])
|
113 |
):
|
114 |
return "toxic resignation"
|
115 |
|
116 |
# 8. Indignant Reproach
|
117 |
if (
|
118 |
+
anger > 0.5 and
|
119 |
+
any(p in patterns for p in ["guilt tripping", "contradictory statements"])
|
120 |
):
|
121 |
return "indignant reproach"
|
122 |
|
|
|
126 |
|
127 |
# 10. Passive Aggression
|
128 |
if (
|
129 |
+
neutral > 0.6 and
|
130 |
+
any(p in patterns for p in ["dismissiveness", "projection"])
|
131 |
):
|
132 |
return "passive aggression"
|
133 |
|
|
|
141 |
|
142 |
# 13. Pleading Concern
|
143 |
if (
|
144 |
+
sadness > 0.3 and
|
145 |
+
any(k in text_lower for k in APOLOGY_KEYWORDS) and
|
146 |
+
not patterns
|
147 |
):
|
148 |
return "pleading concern"
|
149 |
|
|
|
169 |
|
170 |
return None
|
171 |
|
172 |
+
# ——— 4) Single-message Analysis ———————————————————————————————————————————
|
|
|
|
|
173 |
def analyze_message(text):
|
174 |
+
text_lower = text.lower()
|
175 |
+
# 1) Emotion
|
176 |
emotion_profile = get_emotion_profile(text)
|
177 |
+
# 2) Patterns
|
|
|
178 |
toks = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
179 |
with torch.no_grad():
|
180 |
logits = model(**toks).logits.squeeze(0)
|
181 |
scores = torch.sigmoid(logits).cpu().numpy()
|
182 |
+
active_patterns = [lab for lab, sc in zip(LABELS, scores) if sc >= THRESHOLDS[lab]]
|
183 |
+
# append recovery-phase if apology
|
184 |
+
if any(k in text_lower for k in APOLOGY_KEYWORDS) and "recovery phase" not in active_patterns:
|
185 |
+
active_patterns.append("recovery phase")
|
186 |
+
# 3) Tone
|
187 |
+
tone_tag = get_emotional_tone_tag(emotion_profile, active_patterns, text_lower)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
return {
|
189 |
"emotion_profile": emotion_profile,
|
190 |
"active_patterns": active_patterns,
|
191 |
"tone_tag": tone_tag
|
192 |
}
|
193 |
|
194 |
+
# ——— 5) Composite Wrapper ————————————————————————————————————————————————
|
|
|
195 |
def analyze_composite(uploaded_file, *texts):
|
196 |
outputs = []
|
|
|
197 |
# file upload
|
198 |
if uploaded_file is not None:
|
199 |
raw = uploaded_file.read()
|
|
|
206 |
content = raw.decode("utf-8")
|
207 |
except UnicodeDecodeError:
|
208 |
content = raw.decode("latin-1")
|
|
|
209 |
r = analyze_message(content)
|
210 |
outputs.append(
|
211 |
"── Uploaded File ──\n"
|
|
|
213 |
f"Active Patterns : {r['active_patterns']}\n"
|
214 |
f"Emotional Tone : {r['tone_tag']}\n"
|
215 |
)
|
|
|
216 |
# text inputs
|
217 |
for idx, txt in enumerate(texts, start=1):
|
218 |
if not txt:
|
|
|
224 |
f"Active Patterns : {r['active_patterns']}\n"
|
225 |
f"Emotional Tone : {r['tone_tag']}\n"
|
226 |
)
|
|
|
227 |
if not outputs:
|
228 |
return "Please enter at least one message."
|
|
|
229 |
return "\n".join(outputs)
|
230 |
|
231 |
+
# ——— 6) Gradio Interface ————————————————————————————————————————————————
|
|
|
232 |
message_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
|
|
|
233 |
iface = gr.Interface(
|
234 |
fn=analyze_composite,
|
235 |
+
inputs=[gr.File(file_types=[".txt", ".png", ".jpg", ".jpeg"], label="Upload text or image")] + message_inputs,
|
|
|
|
|
236 |
outputs=gr.Textbox(label="Analysis"),
|
237 |
+
title="Tether Analyzer (extended tone tags)",
|
238 |
+
description="Emotion profiling, pattern tags, and a wide set of nuanced tone categories—no abuse score or DARVO."
|
239 |
)
|
240 |
|
241 |
if __name__ == "__main__":
|
242 |
+
iface.launch()
|