Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def analyze_message(text):
|
2 |
preprocessed = preprocess_sentiment_text(text)
|
3 |
sst_output = sst_classifier(preprocessed)
|
@@ -16,4 +101,14 @@ def analyze_message(text):
|
|
16 |
f"🧠 Sentiment: {sentiment_label.title()} ({sentiment_score}%)\n\n"
|
17 |
f"🎭 Emotional Profile:\n{emotion_summary}\n\n"
|
18 |
f"🔍 Tone Tag: {tone_output}"
|
19 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
: import gradio as gr
|
2 |
+
import re
|
3 |
+
from transformers import pipeline as hf_pipeline
|
4 |
+
|
5 |
+
# Load SST model (temporary baseline)
|
6 |
+
sst_classifier = hf_pipeline(
|
7 |
+
"text-classification",
|
8 |
+
model="distilbert-base-uncased-finetuned-sst-2-english",
|
9 |
+
top_k=None,
|
10 |
+
truncation=True
|
11 |
+
)
|
12 |
+
|
13 |
+
# Load emotion classifier
|
14 |
+
emotion_pipeline = hf_pipeline(
|
15 |
+
"text-classification",
|
16 |
+
model="j-hartmann/emotion-english-distilroberta-base",
|
17 |
+
top_k=None,
|
18 |
+
truncation=True
|
19 |
+
)
|
20 |
+
|
21 |
+
# Lexicon enhancement preprocessing
|
22 |
+
negations = {"not", "never", "no", "none", "nobody", "nothing", "neither", "nowhere", "hardly", "scarcely", "barely"}
|
23 |
+
amplifiers = {"very", "really", "extremely", "so", "totally", "completely", "absolutely", "utterly", "super"}
|
24 |
+
softeners = {"slightly", "somewhat", "a bit", "a little", "mildly", "fairly", "kind of"}
|
25 |
+
|
26 |
+
def preprocess_sentiment_text(text):
|
27 |
+
words = text.lower().split()
|
28 |
+
modified = []
|
29 |
+
negate = False
|
30 |
+
|
31 |
+
for word in words:
|
32 |
+
stripped = re.sub(r'\W+', '', word)
|
33 |
+
|
34 |
+
if stripped in negations:
|
35 |
+
negate = True
|
36 |
+
modified.append("<NEG>")
|
37 |
+
continue
|
38 |
+
if stripped in amplifiers:
|
39 |
+
modified.append(f"<AMP>{word}")
|
40 |
+
continue
|
41 |
+
if stripped in softeners:
|
42 |
+
modified.append(f"<SOFT>{word}")
|
43 |
+
continue
|
44 |
+
if negate:
|
45 |
+
modified.append(f"<NEG>{word}")
|
46 |
+
negate = False
|
47 |
+
else:
|
48 |
+
modified.append(word)
|
49 |
+
|
50 |
+
return " ".join(modified)
|
51 |
+
|
52 |
+
# Emotion mapping
|
53 |
+
def get_emotion_profile(text):
|
54 |
+
emotions = emotion_pipeline(text)
|
55 |
+
if isinstance(emotions, list) and isinstance(emotions[0], list):
|
56 |
+
emotions = emotions[0]
|
57 |
+
return {e['label'].lower(): round(e['score'], 3) for e in emotions}
|
58 |
+
|
59 |
+
# Tone tagging logic
|
60 |
+
def get_emotional_tone_tag(emotions, sentiment, patterns, abuse_score=0):
|
61 |
+
sadness = emotions.get("sadness", 0)
|
62 |
+
joy = emotions.get("joy", 0)
|
63 |
+
neutral = emotions.get("neutral", 0)
|
64 |
+
disgust = emotions.get("disgust", 0)
|
65 |
+
anger = emotions.get("anger", 0)
|
66 |
+
fear = emotions.get("fear", 0)
|
67 |
+
|
68 |
+
if sadness > 0.4 and any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"]) and (sentiment == "undermining" or abuse_score > 40):
|
69 |
+
return "performative regret"
|
70 |
+
if (joy > 0.3 or sadness > 0.4) and any(p in patterns for p in ["control", "gaslighting"]) and sentiment == "undermining":
|
71 |
+
return "coercive warmth"
|
72 |
+
if (neutral + disgust) > 0.5 and any(p in patterns for p in ["dismissiveness", "projection", "obscure language"]) and sentiment == "undermining":
|
73 |
+
return "cold invalidation"
|
74 |
+
if (sadness + fear) > 0.5 and sentiment == "supportive" and all(p in ["recovery phase"] for p in patterns):
|
75 |
+
return "genuine vulnerability"
|
76 |
+
if (anger + disgust) > 0.5 and any(p in patterns for p in ["control", "threat", "insults", "dismissiveness"]) and sentiment == "undermining":
|
77 |
+
return "emotional threat"
|
78 |
+
if sadness > 0.6 and any(p in patterns for p in ["guilt tripping", "projection"]) and sentiment == "undermining":
|
79 |
+
return "weaponized sadness"
|
80 |
+
if neutral > 0.5 and any(p in patterns for p in ["dismissiveness", "obscure language"]) and sentiment == "undermining":
|
81 |
+
return "toxic resignation"
|
82 |
+
|
83 |
+
return None
|
84 |
+
|
85 |
+
# Main function
|
86 |
def analyze_message(text):
|
87 |
preprocessed = preprocess_sentiment_text(text)
|
88 |
sst_output = sst_classifier(preprocessed)
|
|
|
101 |
f"🧠 Sentiment: {sentiment_label.title()} ({sentiment_score}%)\n\n"
|
102 |
f"🎭 Emotional Profile:\n{emotion_summary}\n\n"
|
103 |
f"🔍 Tone Tag: {tone_output}"
|
104 |
+
)
|
105 |
+
# Interface
|
106 |
+
iface = gr.Interface(
|
107 |
+
fn=analyze_message,
|
108 |
+
inputs=gr.Textbox(lines=4, placeholder="Paste a message here..."),
|
109 |
+
outputs="text",
|
110 |
+
title="Tether SST + Emotional Tone Tagger",
|
111 |
+
description="Applies lexicon-enhanced preprocessing, classifies sentiment, profiles emotion, and infers tone tags based on behavior logic."
|
112 |
+
)
|
113 |
+
|
114 |
+
iface.launch()
|