Nexus-signal-engine / hoax_filter.py
Raiff1982's picture
Create hoax_filter.py
1d93e26 verified
# hoax_filter.py
# Lightweight, stateless misinformation heuristics for language/source/scale
import re
from urllib.parse import urlparse
from dataclasses import dataclass
from typing import Dict, Any, Optional, Tuple, List
_NUMBER_UNIT = re.compile(
r'(?P<num>[\d,]+(?:\.\d+)?)\s*(?P<unit>mile|miles|km|kilometer|kilometers)',
re.I
)
LANG_RED_FLAGS = [
r'\brecently\s+declassified\b',
r'\bshocking\b',
r'\bastonishing\b',
r'\bexplosive\b',
r'\bexperts\s+say\b',
r'\breportedly\b',
r'\bmothership\b',
r'\bancient\s+alien\b',
r'\bdormant\s+(?:observational\s+)?craft\b',
r'\bangular\s+edges\b',
r'\bviral\b',
r'\bnever\s+before\s+seen\b',
r'\bshaking\s+(?:the\s+)?scientific\s+community\b',
r'\bfootage\b',
]
# Trusted primary sources (add/remove as you like)
ALLOW_DOMAINS = {
'nasa.gov', 'jpl.nasa.gov', 'pds.nasa.gov', 'science.nasa.gov', 'heasarc.gsfc.nasa.gov',
'esa.int', 'esawebservices.esa.int', 'esa-maine.esa.int',
'noirlab.edu', 'cfa.harvard.edu', 'caltech.edu', 'berkeley.edu', 'mit.edu',
'nature.com', 'science.org', 'iopscience.iop.org', 'agu.org',
'arxiv.org', 'adsabs.harvard.edu',
}
# High-virality social/video platforms: treat as high risk for scientific “scoops”
DENY_DOMAINS = {
'm.facebook.com', 'facebook.com', 'x.com', 'twitter.com', 't.co',
'tiktok.com', 'youtube.com', 'youtu.be', 'instagram.com', 'reddit.com',
}
# Medium-risk tabloid/aggregator examples (tune to preference)
MEDIUM_DOMAINS = {
'dailyMail.co.uk', 'dailymail.co.uk', 'newyorkpost.com', 'the-sun.com',
'mirror.co.uk', 'sputniknews.com', 'rt.com',
}
@dataclass
class HoaxFilterResult:
red_flag_hits: int
source_score: float
scale_score: float
combined: float
notes: Dict[str, Any]
class HoaxFilter:
"""
Scores are in [0,1]; higher means more likely hoax/misinformation.
"""
def __init__(self,
red_flag_weight: float = 0.35,
source_weight: float = 0.25,
scale_weight: float = 0.40,
extraordinary_km: float = 50.0):
"""
extraordinary_km: any single claimed length >= this is 'extraordinary'.
Adjust to tighten/loosen sensitivity (100–500 for stricter).
"""
self.red_flag_weight = red_flag_weight
self.source_weight = source_weight
self.scale_weight = scale_weight
self.extraordinary_km = extraordinary_km
self._flag_res = [re.compile(p, re.I) for p in LANG_RED_FLAGS]
@staticmethod
def _km_from_match(num: str, unit: str) -> float:
n = float(num.replace(',', ''))
if unit.lower().startswith('mile'):
return n * 1.609344
return n
def language_red_flags(self, text: str) -> Tuple[int, List[str]]:
hits = []
for rx in self._flag_res:
if rx.search(text):
hits.append(rx.pattern)
return len(hits), hits
def source_heuristic(self, url: Optional[str]) -> Tuple[float, str]:
"""
Returns (risk, note). risk in [0,1]; higher is worse.
"""
if not url:
return 0.5, "no_source"
host = urlparse(url).netloc.lower()
# Strip common subdomains to compare base domains
parts = host.split(':')[0].split('.')
base = '.'.join(parts[-2:]) if len(parts) >= 2 else host
if host in ALLOW_DOMAINS or base in ALLOW_DOMAINS:
return 0.05, f"allow:{host}"
if host in DENY_DOMAINS or base in DENY_DOMAINS:
return 0.85, f"deny:{host}"
if host in MEDIUM_DOMAINS or base in MEDIUM_DOMAINS:
return 0.7, f"medium:{host}"
return 0.6, f"unknown:{host}"
def scale_check(self, text: str, context_keywords: Optional[List[str]] = None) -> Tuple[float, Dict]:
"""
Parse lengths and judge extraordinariness, boosting risk when context
suggests planetary/astronomical claims.
"""
context_keywords = context_keywords or []
sizes_km = []
for m in _NUMBER_UNIT.finditer(text):
sizes_km.append(self._km_from_match(m.group('num'), m.group('unit')))
if not sizes_km:
return 0.0, {"sizes_km": []}
max_km = max(sizes_km)
extraordinary_context = any(k in text.lower() for k in context_keywords)
ratio = max_km / max(self.extraordinary_km, 1.0)
base = min(ratio, 1.0) # saturate at 1.0
if extraordinary_context:
base = min(1.0, base * 1.25) # slight boost in relevant context
return base, {"sizes_km": sizes_km, "max_km": max_km, "extraordinary_context": extraordinary_context}
def score(self, text: str, url: Optional[str] = None,
context_keywords: Optional[List[str]] = None) -> HoaxFilterResult:
rf_count, rf_hits = self.language_red_flags(text)
rf_score = min(rf_count / 4.0, 1.0)
src_risk, src_note = self.source_heuristic(url)
scale_risk, scale_notes = self.scale_check(text, context_keywords=context_keywords)
combined = (self.red_flag_weight * rf_score
+ self.source_weight * src_risk
+ self.scale_weight * scale_risk)
return HoaxFilterResult(
red_flag_hits=rf_count,
source_score=src_risk,
scale_score=scale_risk,
combined=min(combined, 1.0),
notes={
"red_flag_patterns": rf_hits,
"source": src_note,
**scale_notes
}
)