Spaces:
Running
Running
# hoax_filter.py | |
# Lightweight, stateless misinformation heuristics for language/source/scale | |
import re | |
from urllib.parse import urlparse | |
from dataclasses import dataclass | |
from typing import Dict, Any, Optional, Tuple, List | |
_NUMBER_UNIT = re.compile( | |
r'(?P<num>[\d,]+(?:\.\d+)?)\s*(?P<unit>mile|miles|km|kilometer|kilometers)', | |
re.I | |
) | |
LANG_RED_FLAGS = [ | |
r'\brecently\s+declassified\b', | |
r'\bshocking\b', | |
r'\bastonishing\b', | |
r'\bexplosive\b', | |
r'\bexperts\s+say\b', | |
r'\breportedly\b', | |
r'\bmothership\b', | |
r'\bancient\s+alien\b', | |
r'\bdormant\s+(?:observational\s+)?craft\b', | |
r'\bangular\s+edges\b', | |
r'\bviral\b', | |
r'\bnever\s+before\s+seen\b', | |
r'\bshaking\s+(?:the\s+)?scientific\s+community\b', | |
r'\bfootage\b', | |
] | |
# Trusted primary sources (add/remove as you like) | |
ALLOW_DOMAINS = { | |
'nasa.gov', 'jpl.nasa.gov', 'pds.nasa.gov', 'science.nasa.gov', 'heasarc.gsfc.nasa.gov', | |
'esa.int', 'esawebservices.esa.int', 'esa-maine.esa.int', | |
'noirlab.edu', 'cfa.harvard.edu', 'caltech.edu', 'berkeley.edu', 'mit.edu', | |
'nature.com', 'science.org', 'iopscience.iop.org', 'agu.org', | |
'arxiv.org', 'adsabs.harvard.edu', | |
} | |
# High-virality social/video platforms: treat as high risk for scientific “scoops” | |
DENY_DOMAINS = { | |
'm.facebook.com', 'facebook.com', 'x.com', 'twitter.com', 't.co', | |
'tiktok.com', 'youtube.com', 'youtu.be', 'instagram.com', 'reddit.com', | |
} | |
# Medium-risk tabloid/aggregator examples (tune to preference) | |
MEDIUM_DOMAINS = { | |
'dailyMail.co.uk', 'dailymail.co.uk', 'newyorkpost.com', 'the-sun.com', | |
'mirror.co.uk', 'sputniknews.com', 'rt.com', | |
} | |
class HoaxFilterResult: | |
red_flag_hits: int | |
source_score: float | |
scale_score: float | |
combined: float | |
notes: Dict[str, Any] | |
class HoaxFilter: | |
""" | |
Scores are in [0,1]; higher means more likely hoax/misinformation. | |
""" | |
def __init__(self, | |
red_flag_weight: float = 0.35, | |
source_weight: float = 0.25, | |
scale_weight: float = 0.40, | |
extraordinary_km: float = 50.0): | |
""" | |
extraordinary_km: any single claimed length >= this is 'extraordinary'. | |
Adjust to tighten/loosen sensitivity (100–500 for stricter). | |
""" | |
self.red_flag_weight = red_flag_weight | |
self.source_weight = source_weight | |
self.scale_weight = scale_weight | |
self.extraordinary_km = extraordinary_km | |
self._flag_res = [re.compile(p, re.I) for p in LANG_RED_FLAGS] | |
def _km_from_match(num: str, unit: str) -> float: | |
n = float(num.replace(',', '')) | |
if unit.lower().startswith('mile'): | |
return n * 1.609344 | |
return n | |
def language_red_flags(self, text: str) -> Tuple[int, List[str]]: | |
hits = [] | |
for rx in self._flag_res: | |
if rx.search(text): | |
hits.append(rx.pattern) | |
return len(hits), hits | |
def source_heuristic(self, url: Optional[str]) -> Tuple[float, str]: | |
""" | |
Returns (risk, note). risk in [0,1]; higher is worse. | |
""" | |
if not url: | |
return 0.5, "no_source" | |
host = urlparse(url).netloc.lower() | |
# Strip common subdomains to compare base domains | |
parts = host.split(':')[0].split('.') | |
base = '.'.join(parts[-2:]) if len(parts) >= 2 else host | |
if host in ALLOW_DOMAINS or base in ALLOW_DOMAINS: | |
return 0.05, f"allow:{host}" | |
if host in DENY_DOMAINS or base in DENY_DOMAINS: | |
return 0.85, f"deny:{host}" | |
if host in MEDIUM_DOMAINS or base in MEDIUM_DOMAINS: | |
return 0.7, f"medium:{host}" | |
return 0.6, f"unknown:{host}" | |
def scale_check(self, text: str, context_keywords: Optional[List[str]] = None) -> Tuple[float, Dict]: | |
""" | |
Parse lengths and judge extraordinariness, boosting risk when context | |
suggests planetary/astronomical claims. | |
""" | |
context_keywords = context_keywords or [] | |
sizes_km = [] | |
for m in _NUMBER_UNIT.finditer(text): | |
sizes_km.append(self._km_from_match(m.group('num'), m.group('unit'))) | |
if not sizes_km: | |
return 0.0, {"sizes_km": []} | |
max_km = max(sizes_km) | |
extraordinary_context = any(k in text.lower() for k in context_keywords) | |
ratio = max_km / max(self.extraordinary_km, 1.0) | |
base = min(ratio, 1.0) # saturate at 1.0 | |
if extraordinary_context: | |
base = min(1.0, base * 1.25) # slight boost in relevant context | |
return base, {"sizes_km": sizes_km, "max_km": max_km, "extraordinary_context": extraordinary_context} | |
def score(self, text: str, url: Optional[str] = None, | |
context_keywords: Optional[List[str]] = None) -> HoaxFilterResult: | |
rf_count, rf_hits = self.language_red_flags(text) | |
rf_score = min(rf_count / 4.0, 1.0) | |
src_risk, src_note = self.source_heuristic(url) | |
scale_risk, scale_notes = self.scale_check(text, context_keywords=context_keywords) | |
combined = (self.red_flag_weight * rf_score | |
+ self.source_weight * src_risk | |
+ self.scale_weight * scale_risk) | |
return HoaxFilterResult( | |
red_flag_hits=rf_count, | |
source_score=src_risk, | |
scale_score=scale_risk, | |
combined=min(combined, 1.0), | |
notes={ | |
"red_flag_patterns": rf_hits, | |
"source": src_note, | |
**scale_notes | |
} | |
) | |