Raiff1982 commited on
Commit
1d93e26
·
verified ·
1 Parent(s): 38badbc

Create hoax_filter.py

Browse files
Files changed (1) hide show
  1. hoax_filter.py +157 -0
hoax_filter.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # hoax_filter.py
2
+ # Lightweight, stateless misinformation heuristics for language/source/scale
3
+
4
+ import re
5
+ from urllib.parse import urlparse
6
+ from dataclasses import dataclass
7
+ from typing import Dict, Any, Optional, Tuple, List
8
+
9
+ _NUMBER_UNIT = re.compile(
10
+ r'(?P<num>[\d,]+(?:\.\d+)?)\s*(?P<unit>mile|miles|km|kilometer|kilometers)',
11
+ re.I
12
+ )
13
+
14
+ LANG_RED_FLAGS = [
15
+ r'\brecently\s+declassified\b',
16
+ r'\bshocking\b',
17
+ r'\bastonishing\b',
18
+ r'\bexplosive\b',
19
+ r'\bexperts\s+say\b',
20
+ r'\breportedly\b',
21
+ r'\bmothership\b',
22
+ r'\bancient\s+alien\b',
23
+ r'\bdormant\s+(?:observational\s+)?craft\b',
24
+ r'\bangular\s+edges\b',
25
+ r'\bviral\b',
26
+ r'\bnever\s+before\s+seen\b',
27
+ r'\bshaking\s+(?:the\s+)?scientific\s+community\b',
28
+ r'\bfootage\b',
29
+ ]
30
+
31
+ # Trusted primary sources (add/remove as you like)
32
+ ALLOW_DOMAINS = {
33
+ 'nasa.gov', 'jpl.nasa.gov', 'pds.nasa.gov', 'science.nasa.gov', 'heasarc.gsfc.nasa.gov',
34
+ 'esa.int', 'esawebservices.esa.int', 'esa-maine.esa.int',
35
+ 'noirlab.edu', 'cfa.harvard.edu', 'caltech.edu', 'berkeley.edu', 'mit.edu',
36
+ 'nature.com', 'science.org', 'iopscience.iop.org', 'agu.org',
37
+ 'arxiv.org', 'adsabs.harvard.edu',
38
+ }
39
+
40
+ # High-virality social/video platforms: treat as high risk for scientific “scoops”
41
+ DENY_DOMAINS = {
42
+ 'm.facebook.com', 'facebook.com', 'x.com', 'twitter.com', 't.co',
43
+ 'tiktok.com', 'youtube.com', 'youtu.be', 'instagram.com', 'reddit.com',
44
+ }
45
+
46
+ # Medium-risk tabloid/aggregator examples (tune to preference)
47
+ MEDIUM_DOMAINS = {
48
+ 'dailyMail.co.uk', 'dailymail.co.uk', 'newyorkpost.com', 'the-sun.com',
49
+ 'mirror.co.uk', 'sputniknews.com', 'rt.com',
50
+ }
51
+
52
+ @dataclass
53
+ class HoaxFilterResult:
54
+ red_flag_hits: int
55
+ source_score: float
56
+ scale_score: float
57
+ combined: float
58
+ notes: Dict[str, Any]
59
+
60
+ class HoaxFilter:
61
+ """
62
+ Scores are in [0,1]; higher means more likely hoax/misinformation.
63
+ """
64
+
65
+ def __init__(self,
66
+ red_flag_weight: float = 0.35,
67
+ source_weight: float = 0.25,
68
+ scale_weight: float = 0.40,
69
+ extraordinary_km: float = 50.0):
70
+ """
71
+ extraordinary_km: any single claimed length >= this is 'extraordinary'.
72
+ Adjust to tighten/loosen sensitivity (100–500 for stricter).
73
+ """
74
+ self.red_flag_weight = red_flag_weight
75
+ self.source_weight = source_weight
76
+ self.scale_weight = scale_weight
77
+ self.extraordinary_km = extraordinary_km
78
+ self._flag_res = [re.compile(p, re.I) for p in LANG_RED_FLAGS]
79
+
80
+ @staticmethod
81
+ def _km_from_match(num: str, unit: str) -> float:
82
+ n = float(num.replace(',', ''))
83
+ if unit.lower().startswith('mile'):
84
+ return n * 1.609344
85
+ return n
86
+
87
+ def language_red_flags(self, text: str) -> Tuple[int, List[str]]:
88
+ hits = []
89
+ for rx in self._flag_res:
90
+ if rx.search(text):
91
+ hits.append(rx.pattern)
92
+ return len(hits), hits
93
+
94
+ def source_heuristic(self, url: Optional[str]) -> Tuple[float, str]:
95
+ """
96
+ Returns (risk, note). risk in [0,1]; higher is worse.
97
+ """
98
+ if not url:
99
+ return 0.5, "no_source"
100
+ host = urlparse(url).netloc.lower()
101
+
102
+ # Strip common subdomains to compare base domains
103
+ parts = host.split(':')[0].split('.')
104
+ base = '.'.join(parts[-2:]) if len(parts) >= 2 else host
105
+
106
+ if host in ALLOW_DOMAINS or base in ALLOW_DOMAINS:
107
+ return 0.05, f"allow:{host}"
108
+ if host in DENY_DOMAINS or base in DENY_DOMAINS:
109
+ return 0.85, f"deny:{host}"
110
+ if host in MEDIUM_DOMAINS or base in MEDIUM_DOMAINS:
111
+ return 0.7, f"medium:{host}"
112
+ return 0.6, f"unknown:{host}"
113
+
114
+ def scale_check(self, text: str, context_keywords: Optional[List[str]] = None) -> Tuple[float, Dict]:
115
+ """
116
+ Parse lengths and judge extraordinariness, boosting risk when context
117
+ suggests planetary/astronomical claims.
118
+ """
119
+ context_keywords = context_keywords or []
120
+ sizes_km = []
121
+ for m in _NUMBER_UNIT.finditer(text):
122
+ sizes_km.append(self._km_from_match(m.group('num'), m.group('unit')))
123
+
124
+ if not sizes_km:
125
+ return 0.0, {"sizes_km": []}
126
+
127
+ max_km = max(sizes_km)
128
+ extraordinary_context = any(k in text.lower() for k in context_keywords)
129
+ ratio = max_km / max(self.extraordinary_km, 1.0)
130
+ base = min(ratio, 1.0) # saturate at 1.0
131
+ if extraordinary_context:
132
+ base = min(1.0, base * 1.25) # slight boost in relevant context
133
+ return base, {"sizes_km": sizes_km, "max_km": max_km, "extraordinary_context": extraordinary_context}
134
+
135
+ def score(self, text: str, url: Optional[str] = None,
136
+ context_keywords: Optional[List[str]] = None) -> HoaxFilterResult:
137
+ rf_count, rf_hits = self.language_red_flags(text)
138
+ rf_score = min(rf_count / 4.0, 1.0)
139
+
140
+ src_risk, src_note = self.source_heuristic(url)
141
+ scale_risk, scale_notes = self.scale_check(text, context_keywords=context_keywords)
142
+
143
+ combined = (self.red_flag_weight * rf_score
144
+ + self.source_weight * src_risk
145
+ + self.scale_weight * scale_risk)
146
+
147
+ return HoaxFilterResult(
148
+ red_flag_hits=rf_count,
149
+ source_score=src_risk,
150
+ scale_score=scale_risk,
151
+ combined=min(combined, 1.0),
152
+ notes={
153
+ "red_flag_patterns": rf_hits,
154
+ "source": src_note,
155
+ **scale_notes
156
+ }
157
+ )