# hoax_filter.py # Lightweight, stateless misinformation heuristics for language/source/scale import re from urllib.parse import urlparse from dataclasses import dataclass from typing import Dict, Any, Optional, Tuple, List _NUMBER_UNIT = re.compile( r'(?P[\d,]+(?:\.\d+)?)\s*(?Pmile|miles|km|kilometer|kilometers)', re.I ) LANG_RED_FLAGS = [ r'\brecently\s+declassified\b', r'\bshocking\b', r'\bastonishing\b', r'\bexplosive\b', r'\bexperts\s+say\b', r'\breportedly\b', r'\bmothership\b', r'\bancient\s+alien\b', r'\bdormant\s+(?:observational\s+)?craft\b', r'\bangular\s+edges\b', r'\bviral\b', r'\bnever\s+before\s+seen\b', r'\bshaking\s+(?:the\s+)?scientific\s+community\b', r'\bfootage\b', ] # Trusted primary sources (add/remove as you like) ALLOW_DOMAINS = { 'nasa.gov', 'jpl.nasa.gov', 'pds.nasa.gov', 'science.nasa.gov', 'heasarc.gsfc.nasa.gov', 'esa.int', 'esawebservices.esa.int', 'esa-maine.esa.int', 'noirlab.edu', 'cfa.harvard.edu', 'caltech.edu', 'berkeley.edu', 'mit.edu', 'nature.com', 'science.org', 'iopscience.iop.org', 'agu.org', 'arxiv.org', 'adsabs.harvard.edu', } # High-virality social/video platforms: treat as high risk for scientific “scoops” DENY_DOMAINS = { 'm.facebook.com', 'facebook.com', 'x.com', 'twitter.com', 't.co', 'tiktok.com', 'youtube.com', 'youtu.be', 'instagram.com', 'reddit.com', } # Medium-risk tabloid/aggregator examples (tune to preference) MEDIUM_DOMAINS = { 'dailyMail.co.uk', 'dailymail.co.uk', 'newyorkpost.com', 'the-sun.com', 'mirror.co.uk', 'sputniknews.com', 'rt.com', } @dataclass class HoaxFilterResult: red_flag_hits: int source_score: float scale_score: float combined: float notes: Dict[str, Any] class HoaxFilter: """ Scores are in [0,1]; higher means more likely hoax/misinformation. """ def __init__(self, red_flag_weight: float = 0.35, source_weight: float = 0.25, scale_weight: float = 0.40, extraordinary_km: float = 50.0): """ extraordinary_km: any single claimed length >= this is 'extraordinary'. Adjust to tighten/loosen sensitivity (100–500 for stricter). """ self.red_flag_weight = red_flag_weight self.source_weight = source_weight self.scale_weight = scale_weight self.extraordinary_km = extraordinary_km self._flag_res = [re.compile(p, re.I) for p in LANG_RED_FLAGS] @staticmethod def _km_from_match(num: str, unit: str) -> float: n = float(num.replace(',', '')) if unit.lower().startswith('mile'): return n * 1.609344 return n def language_red_flags(self, text: str) -> Tuple[int, List[str]]: hits = [] for rx in self._flag_res: if rx.search(text): hits.append(rx.pattern) return len(hits), hits def source_heuristic(self, url: Optional[str]) -> Tuple[float, str]: """ Returns (risk, note). risk in [0,1]; higher is worse. """ if not url: return 0.5, "no_source" host = urlparse(url).netloc.lower() # Strip common subdomains to compare base domains parts = host.split(':')[0].split('.') base = '.'.join(parts[-2:]) if len(parts) >= 2 else host if host in ALLOW_DOMAINS or base in ALLOW_DOMAINS: return 0.05, f"allow:{host}" if host in DENY_DOMAINS or base in DENY_DOMAINS: return 0.85, f"deny:{host}" if host in MEDIUM_DOMAINS or base in MEDIUM_DOMAINS: return 0.7, f"medium:{host}" return 0.6, f"unknown:{host}" def scale_check(self, text: str, context_keywords: Optional[List[str]] = None) -> Tuple[float, Dict]: """ Parse lengths and judge extraordinariness, boosting risk when context suggests planetary/astronomical claims. """ context_keywords = context_keywords or [] sizes_km = [] for m in _NUMBER_UNIT.finditer(text): sizes_km.append(self._km_from_match(m.group('num'), m.group('unit'))) if not sizes_km: return 0.0, {"sizes_km": []} max_km = max(sizes_km) extraordinary_context = any(k in text.lower() for k in context_keywords) ratio = max_km / max(self.extraordinary_km, 1.0) base = min(ratio, 1.0) # saturate at 1.0 if extraordinary_context: base = min(1.0, base * 1.25) # slight boost in relevant context return base, {"sizes_km": sizes_km, "max_km": max_km, "extraordinary_context": extraordinary_context} def score(self, text: str, url: Optional[str] = None, context_keywords: Optional[List[str]] = None) -> HoaxFilterResult: rf_count, rf_hits = self.language_red_flags(text) rf_score = min(rf_count / 4.0, 1.0) src_risk, src_note = self.source_heuristic(url) scale_risk, scale_notes = self.scale_check(text, context_keywords=context_keywords) combined = (self.red_flag_weight * rf_score + self.source_weight * src_risk + self.scale_weight * scale_risk) return HoaxFilterResult( red_flag_hits=rf_count, source_score=src_risk, scale_score=scale_risk, combined=min(combined, 1.0), notes={ "red_flag_patterns": rf_hits, "source": src_note, **scale_notes } )