File size: 23,739 Bytes
5b7f559
aef0372
 
bd67e9b
 
aef0372
bd67e9b
5b7f559
 
 
bd67e9b
5b7f559
 
da1c657
ba5c284
da1c657
 
ba5c284
 
da1c657
ba5c284
da1c657
 
 
 
 
 
ba5c284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1c657
 
 
 
 
ba5c284
da1c657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5c284
da1c657
 
ba5c284
da1c657
 
 
 
ba5c284
da1c657
 
ba5c284
da1c657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5c284
 
 
 
 
 
 
 
 
 
 
da1c657
 
ba5c284
da1c657
ba5c284
da1c657
ba5c284
 
 
da1c657
ba5c284
 
 
 
 
da1c657
ba5c284
 
da1c657
 
ba5c284
da1c657
 
 
 
ba5c284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d7cda7
ba5c284
aef0372
da1c657
aef0372
ba5c284
 
 
 
 
 
 
 
da1c657
ba5c284
aef0372
2d0370f
da1c657
 
 
2d0370f
da1c657
 
 
 
 
 
 
 
 
 
bd67e9b
da1c657
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5c284
 
 
 
 
da1c657
 
5b7f559
da1c657
 
 
 
 
 
ba5c284
da1c657
ba5c284
 
 
bd67e9b
ba5c284
bd67e9b
da1c657
 
ba5c284
 
 
 
 
 
 
 
da1c657
 
 
ba5c284
da1c657
 
 
 
 
 
 
 
 
ba5c284
 
 
da1c657
bd67e9b
ba5c284
da1c657
 
bd67e9b
 
 
 
da1c657
bd67e9b
 
 
ba5c284
 
 
bd67e9b
 
ba5c284
bd67e9b
 
da1c657
bd67e9b
da1c657
 
 
bd67e9b
da1c657
 
 
 
 
 
 
 
bd67e9b
5b7f559
bd67e9b
 
 
 
 
 
 
 
 
 
da1c657
 
bd67e9b
5b7f559
bd67e9b
 
 
 
5b7f559
bd67e9b
da1c657
 
bd67e9b
 
da1c657
 
bd67e9b
5b7f559
bd67e9b
da1c657
 
bd67e9b
 
 
da1c657
 
bd67e9b
5b7f559
bd67e9b
 
da1c657
 
bd67e9b
5b7f559
bd67e9b
 
da1c657
bd67e9b
 
 
2d0370f
da1c657
 
 
 
 
 
bd67e9b
da1c657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd67e9b
2d0370f
da1c657
 
 
 
 
 
 
 
bd67e9b
 
2d0370f
da1c657
 
 
ba5c284
 
 
da1c657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5c284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1c657
 
 
 
 
ba5c284
 
da1c657
 
 
 
ba5c284
 
 
 
 
 
 
 
 
 
 
da1c657
 
 
 
ba5c284
 
da1c657
 
bd67e9b
8d3bbf0
da1c657
 
 
 
 
bd67e9b
8d3bbf0
da1c657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5c284
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import os
import time
import pandas as pd
import gradio as gr
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from PyPDF2 import PdfReader


# Configuration constants
COLLECTION_NAME = "GBVRS"
DATA_FOLDER = "./"
APP_VERSION = "v1.0.0"
APP_NAME = "Ijwi ry'Ubufasha"
MAX_HISTORY_MESSAGES = 8  # Limit history to avoid token limits

# Global variables for application state
llm = None
embed_model = None
vectorstore = None
retriever = None
rag_chain = None

# User session management
class UserSession:
    def __init__(self, session_id, llm):
        """Initialize a user session with unique ID and language model."""
        self.session_id = session_id
        self.user_info = {"Nickname": "Guest"}
        self.conversation_history = []
        self.llm = llm
        self.welcome_message = None
        self.last_activity = time.time()
        
    def set_user(self, user_info):
        """Set user information and generate welcome message."""
        self.user_info = user_info
        self.generate_welcome_message()
        
        # Initialize conversation history with welcome message
        welcome = self.get_welcome_message()
        self.conversation_history = [
            {"role": "assistant", "content": welcome},
        ]
        
    def get_user(self):
        """Get current user information."""
        return self.user_info
    
    def generate_welcome_message(self):
        """Generate a dynamic welcome message using the LLM."""
        try:
            nickname = self.user_info.get("Nickname", "Guest")
            
            # Use the LLM to generate the message
            prompt = (
                f"Create a brief and warm welcome message for {nickname} that's about 1-2 sentences. "
                f"Emphasize this is a safe space for discussing gender-based violence issues "
                f"and that we provide support and resources. Keep it warm and reassuring."
            )
            
            response = self.llm.invoke(prompt)
            welcome = response.content.strip()
            
            # Format the message with HTML styling
            self.welcome_message = (
                f"<div style='font-size: 18px; color: #4E6BBF;'>"
                f"{welcome}"
                f"</div>"
            )
        except Exception as e:
            # Fallback welcome message
            nickname = self.user_info.get("Nickname", "Guest")
            self.welcome_message = (
                f"<div style='font-size: 18px; color: #4E6BBF;'>"
                f"Welcome, {nickname}! You're in a safe space. We're here to provide support with "
                f"gender-based violence issues and connect you with resources that can help."
                f"</div>"
            )
    
    def get_welcome_message(self):
        """Get the formatted welcome message."""
        if not self.welcome_message:
            self.generate_welcome_message()
        return self.welcome_message
    
    def add_to_history(self, role, message):
        """Add a message to the conversation history."""
        self.conversation_history.append({"role": role, "content": message})
        self.last_activity = time.time()
        
        # Trim history if it gets too long
        if len(self.conversation_history) > MAX_HISTORY_MESSAGES * 2:  # Keep pairs of messages
            # Keep the first message (welcome) and the most recent messages
            self.conversation_history = [self.conversation_history[0]] + self.conversation_history[-MAX_HISTORY_MESSAGES*2+1:]
    
    def get_conversation_history(self):
        """Get the full conversation history."""
        return self.conversation_history
    
    def get_formatted_history(self):
        """Get conversation history formatted as a string for the LLM."""
        # Skip the welcome message and only include the last few exchanges
        recent_history = self.conversation_history[1:] if len(self.conversation_history) > 1 else []
        
        # Limit to last MAX_HISTORY_MESSAGES exchanges
        if len(recent_history) > MAX_HISTORY_MESSAGES * 2:
            recent_history = recent_history[-MAX_HISTORY_MESSAGES*2:]
            
        formatted_history = ""
        for entry in recent_history:
            role = "User" if entry["role"] == "user" else "Assistant"
            # Truncate very long messages to avoid token limits
            content = entry["content"]
            if len(content) > 500:  # Limit message length
                content = content[:500] + "..."
            formatted_history += f"{role}: {content}\n\n"
            
        return formatted_history
    
    def is_expired(self, timeout_seconds=3600):
        """Check if the session has been inactive for too long."""
        return (time.time() - self.last_activity) > timeout_seconds

# Session manager to handle multiple users
class SessionManager:
    def __init__(self):
        """Initialize the session manager."""
        self.sessions = {}
        self.session_timeout = 3600  # 1 hour timeout
        
    def get_session(self, session_id):
        """Get an existing session or create a new one."""
        # Clean expired sessions first
        self._clean_expired_sessions()
        
        # Create new session if needed
        if session_id not in self.sessions:
            self.sessions[session_id] = UserSession(session_id, llm)
            
        return self.sessions[session_id]
    
    def _clean_expired_sessions(self):
        """Remove expired sessions to free up memory."""
        expired_keys = []
        for key, session in self.sessions.items():
            if session.is_expired(self.session_timeout):
                expired_keys.append(key)
                
        for key in expired_keys:
            del self.sessions[key]

# Initialize the session manager
session_manager = SessionManager()

def initialize_assistant():
    """Initialize the assistant with necessary components and configurations."""
    global llm, embed_model, vectorstore, retriever, rag_chain
    
    # Initialize API key - try both possible key names
    groq_api_key = os.environ.get('GBV') or os.environ.get('GBV')
    if not groq_api_key:
        print("WARNING: No GROQ API key found in userdata.")
        
    # Initialize LLM - Default to Llama model which is more widely available
    llm = ChatGroq(
        model="llama-3.3-70b-versatile",  # More reliable than whisper model
        api_key=groq_api_key
    )
    
    # Set up embedding model
    try:
        embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
    except Exception as e:
        # Fallback to smaller model
        embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
        
    # Process data and create vector store
    print("Processing data files...")
    data = process_data_files()
    
    print("Creating vector store...")
    vectorstore = create_vectorstore(data)
    retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
    
    # Create RAG chain
    print("Setting up RAG chain...")
    rag_chain = create_rag_chain()
    
    print(f"βœ… {APP_NAME} initialized successfully")

def process_data_files():
    """Process all data files from the specified folder."""
    context_data = []
    
    try:
        if not os.path.exists(DATA_FOLDER):
            print(f"WARNING: Data folder does not exist: {DATA_FOLDER}")
            return context_data
            
        # Get list of data files
        all_files = os.listdir(DATA_FOLDER)
        data_files = [f for f in all_files if f.lower().endswith(('.csv', '.xlsx', '.xls'))]
        
        if not data_files:
            print(f"WARNING: No data files found in: {DATA_FOLDER}")
            return context_data
            
        # Process each file
        for index, file_name in enumerate(data_files, 1):
            print(f"Processing file {index}/{len(data_files)}: {file_name}")
            file_path = os.path.join(DATA_FOLDER, file_name)
            
            try:
                # Read file based on extension
                if file_name.lower().endswith('.csv'):
                    df = pd.read_csv(file_path)
                else:
                    df = pd.read_excel(file_path)
                
                # Check if column 3 exists (source data is in third column)
                if df.shape[1] > 2:
                    column_data = df.iloc[:, 2].dropna().astype(str).tolist()
                    
                    # Each row becomes one chunk with metadata
                    for i, text in enumerate(column_data):
                        if text and len(text.strip()) > 0:
                            context_data.append({
                                "page_content": text, 
                                "metadata": {
                                    "source": file_name, 
                                    "row": i+1
                                }
                            })
                else:
                    print(f"WARNING: File {file_name} has fewer than 3 columns.")
                    
            except Exception as e:
                print(f"ERROR processing file {file_name}: {e}")
        
        print(f"βœ… Created {len(context_data)} chunks from {len(data_files)} files.")
        
    except Exception as e:
        print(f"ERROR accessing data folder: {e}")
        
    return context_data
def create_vectorstore(data):
    """
    Creates and returns a Chroma vector store populated with the provided data.

    Parameters:
        data (list): A list of dictionaries, each containing 'page_content' and 'metadata'.

    Returns:
        Chroma: The populated Chroma vector store instance.
    """
    # Initialize the vector store
    vectorstore = Chroma(
        collection_name=COLLECTION_NAME,
        embedding_function=embed_model,
        persist_directory="./"
    )

    if not data:
        print("⚠️ No data provided. Returning an empty vector store.")
        return vectorstore

    try:
        # Extract text and metadata from the data
        texts = [doc["page_content"] for doc in data]

        # Add the texts and metadata to the vector store
        vectorstore.add_texts(texts)
    except Exception as e:
        print(f"❌ Failed to add documents to vector store: {e}")

    return vs


def create_rag_chain():
    """Create the RAG chain for processing user queries."""
    # Define the prompt template
    template = """
     You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your responses must be based EXCLUSIVELY on the information provided in the context. Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
        
        **Previous conversation:** {conversation_history}
        **Context information:** {context}
        **User's Question:** {question}
        
        When responding follow these guidelines:
        
        1. **Strict Context Adherence**
           - Only use information that appears in the provided {context}
           - If the answer is not found in the context, state "I don't have that information in my available resources" rather than generating a response
        
        2. **Personalized Communication**
           - Avoid contractions (e.g., use I am instead of I'm)
           - Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
           - Use selective emojis (😊, πŸ€—, ❀️) only when tone-appropriate and not during crisis discussions
           - Balance warmth with professionalism
                
        3. **Emotional Intelligence** 
           - Validate feelings without judgment 
           - Offer reassurance when appropriate, always centered on empowerment
           - Adjust your tone based on the emotional state conveyed
            
        4. **Conversation Management**
           - Refer to {conversation_history} to maintain continuity and avoid repetition
           - Use clear paragraph breaks for readability
                
        5. **Information Delivery**
           - Extract only relevant information from {context} that directly addresses the question
           - Present information in accessible, non-technical language
           - When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
        
        6. **Safety and Ethics**
           - Do not generate any speculative content or advice not supported by the context
           - If the context contains safety information, prioritize sharing that information
        
        Your response must come entirely from the provided context, maintaining the supportive tone while never introducing information from outside the provided materials.
        **Context:** {context}
        **User's Question:** {question}
        **Your Response:**
    """

    
    rag_prompt = PromptTemplate.from_template(template)
    
    def get_context_and_question(query_with_session):
        # Extract query and session_id
        query = query_with_session["query"]
        session_id = query_with_session["session_id"]
        
        # Get the user session
        session = session_manager.get_session(session_id)
        user_info = session.get_user()
        first_name = user_info.get("Nickname", "User")
        conversation_hist = session.get_formatted_history()
        
        try:
            # Retrieve relevant documents
            retrieved_docs = retriever.invoke(query)
            context_str = format_context(retrieved_docs)
        except Exception as e:
            print(f"ERROR retrieving documents: {e}")
            context_str = "No relevant information found."
        
        # Return the combined inputs for the prompt
        return {
            "context": context_str,
            "question": query,
            "first_name": first_name,
            "conversation_history": conversation_hist
        }
    
    # Build the chain
    try:
        chain = (
            RunnablePassthrough() 
            | get_context_and_question 
            | rag_prompt 
            | llm 
            | StrOutputParser()
        )
        return chain
    except Exception as e:
        print(f"ERROR creating RAG chain: {e}")
        
        # Return a simple function as fallback
        def fallback_chain(query_with_session):
            session_id = query_with_session["session_id"]
            session = session_manager.get_session(session_id)
            nickname = session.get_user().get("Nickname", "there")
            return f"I'm here to help you, {nickname}, but I'm experiencing some technical difficulties right now. Please try again shortly."
            
        return fallback_chain

def format_context(retrieved_docs):
    """Format retrieved documents into a string context."""
    if not retrieved_docs:
        return "No relevant information available."
    return "\n\n".join([doc.page_content for doc in retrieved_docs])

def rag_memory_stream(message, history, session_id):
    """Process user message and generate response with memory."""
    # Get the user session
    session = session_manager.get_session(session_id)
    
    # Add user message to history
    session.add_to_history("user", message)

    try:
        # Get response from RAG chain
        print(f"Processing message for session {session_id}: {message[:50]}...")
        
        # Pass both query and session_id to the chain
        response = rag_chain.invoke({
            "query": message,
            "session_id": session_id
        })
        
        print(f"Generated response: {response[:50]}...")
        
        # Add assistant response to history
        session.add_to_history("assistant", response)
        
        # Yield the response
        yield response
        
    except Exception as e:
        import traceback
        print(f"ERROR in rag_memory_stream: {e}")
        print(f"Detailed error: {traceback.format_exc()}")
        
        nickname = session.get_user().get("Nickname", "there")
        error_msg = f"I'm sorry, {nickname}. I encountered an error processing your request. Let's try a different question."
        session.add_to_history("assistant", error_msg)
        yield error_msg

def collect_user_info(nickname, session_id):
    """Store user details and initialize session."""
    if not nickname or nickname.strip() == "":
        return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []

    # Store user info for chat session
    user_info = {
        "Nickname": nickname.strip(),
        "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
    }

    # Get the session and set user info
    session = session_manager.get_session(session_id)
    session.set_user(user_info)

    # Generate welcome message
    welcome_message = session.get_welcome_message()

    # Return welcome message and update UI
    return welcome_message, gr.update(visible=True), gr.update(visible=False), [(None, welcome_message)]

def get_css():
    """Define CSS for the UI."""
    return """
    :root {
        --primary: #4E6BBF;
        --primary-light: #697BBF;
        --text-primary: #333333;
        --text-secondary: #666666;
        --background: #F9FAFC;
        --card-bg: #FFFFFF;
        --border: #E1E5F0;
        --shadow: rgba(0, 0, 0, 0.05);
    }

    body, .gradio-container {
        margin: 0;
        padding: 0;
        width: 100vw;
        height: 100vh;
        display: flex;
        flex-direction: column;
        justify-content: center;
        align-items: center;
        background: var(--background);
        color: var(--text-primary);
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }

    .gradio-container {
        max-width: 100%;
        max-height: 100%;
    }

    .gr-box {
        background: var(--card-bg);
        color: var(--text-primary);
        border-radius: 12px;
        padding: 2rem;
        border: 1px solid var(--border);
        box-shadow: 0 4px 12px var(--shadow);
    }

    .gr-button-primary {
        background: var(--primary);
        color: white;
        padding: 12px 24px;
        border-radius: 8px;
        transition: all 0.3s ease;
        border: none;
        font-weight: bold;
    }

    .gr-button-primary:hover {
        transform: translateY(-1px);
        box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
        background: var(--primary-light);
    }

    footer {
        text-align: center;
        color: var(--text-secondary);
        padding: 1rem;
        font-size: 0.9em;
    }

    .gr-markdown h2 {
        color: var(--primary);
        margin-bottom: 0.5rem;
        font-size: 1.8em;
    }

    .gr-markdown h3 {
        color: var(--text-secondary);
        margin-bottom: 1.5rem;
        font-weight: normal;
    }

    #chatbot_container .chat-title h1, 
    #chatbot_container .empty-chatbot {
        color: var(--primary);
    }

    #input_nickname {
        padding: 12px;
        border-radius: 8px;
        border: 1px solid var(--border);
        background: var(--card-bg);
        transition: all 0.3s ease;
    }
    
    #input_nickname:focus {
        border-color: var(--primary);
        box-shadow: 0 0 0 2px rgba(78, 107, 191, 0.2);
        outline: none;
    }

    .chatbot-container .message.user {
        background: #E8F0FE;
        border-radius: 12px 12px 0 12px;
    }

    .chatbot-container .message.bot {
        background: #F5F7FF;
        border-radius: 12px 12px 12px 0;
    }
    """

def create_ui():
    """Create and configure the Gradio UI."""
    with gr.Blocks(css=get_css(), theme=gr.themes.Soft()) as demo:
        # Create a unique session ID for this browser tab
        session_id = gr.State(value=f"session_{int(time.time())}_{os.urandom(4).hex()}")
        
        # Registration section
        with gr.Column(visible=True, elem_id="registration_container") as registration_container:
            gr.Markdown(f"## Welcome to {APP_NAME}")
            gr.Markdown("### Your privacy is important to us. Please provide a nickname to continue.")

            with gr.Row():
                first_name = gr.Textbox(
                    label="Nickname",
                    placeholder="Enter your nickname",
                    scale=1,
                    elem_id="input_nickname"
                )

            with gr.Row():
                submit_btn = gr.Button("Start Chatting", variant="primary", scale=2)

            response_message = gr.Markdown()

        # Chatbot section (initially hidden)
        with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
            # Create a custom chat interface to pass session_id to our function
            chatbot = gr.Chatbot(
                elem_id="chatbot", 
                height=500,
                show_label=False
            )
            
            with gr.Row():
                msg = gr.Textbox(
                    placeholder="Type your message here...",
                    show_label=False,
                    container=False,
                    scale=9
                )
                submit = gr.Button("Send", scale=1, variant="primary")
            
            examples = gr.Examples(
                examples=[
                    "What resources are available for GBV victims?",
                    "How can I report an incident?",
                    "What are my legal rights?",
                    "I need help, what should I do first?"
                ],
                inputs=msg
            )

            # Footer with version info
            gr.Markdown(f"{APP_NAME} {APP_VERSION} Β© 2025")
            
            # Handle chat message submission
            def respond(message, chat_history, session_id):
                bot_message = ""
                for chunk in rag_memory_stream(message, chat_history, session_id):
                    bot_message += chunk
                chat_history.append((message, bot_message))
                return "", chat_history
            
            msg.submit(respond, [msg, chatbot, session_id], [msg, chatbot])
            submit.click(respond, [msg, chatbot, session_id], [msg, chatbot])

        # Handle user registration
        submit_btn.click(
            collect_user_info,
            inputs=[first_name, session_id],
            outputs=[response_message, chatbot_container, registration_container, chatbot]
        )

    return demo

def launch_app():
    """Launch the Gradio interface."""
    ui = create_ui()
    ui.launch(share=True)

# Main execution
if __name__ == "__main__":
    try:
        # Initialize and launch the assistant
        initialize_assistant()
        launch_app()
    except Exception as e:
        import traceback
        print(f"❌ Fatal error initializing GBV Assistant: {e}")
        print(traceback.format_exc())
        
        # Create a minimal emergency UI to display the error
        with gr.Blocks() as error_demo:
            gr.Markdown("## System Error")
            gr.Markdown(f"An error occurred while initializing the application: {str(e)}")
            gr.Markdown("Please check your configuration and try again.")
            
        error_demo.launch(share=True, inbrowser=True, debug=True)