Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,358 +1,242 @@
|
|
1 |
import os
|
2 |
-
import PyPDF2
|
3 |
-
from PyPDF2 import PdfReader
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
## Embedding model!
|
7 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
-
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
folder_path = "./"
|
13 |
-
context_data = []
|
14 |
-
|
15 |
-
# List all files in the folder
|
16 |
-
files = os.listdir(folder_path)
|
17 |
-
|
18 |
-
# Get list of CSV and Excel files
|
19 |
-
data_files = [f for f in files if f.endswith(('.csv', '.xlsx', '.xls'))]
|
20 |
-
|
21 |
-
# Process each file
|
22 |
-
for f, file in enumerate(data_files, 1):
|
23 |
-
print(f"\nProcessing file {f}: {file}")
|
24 |
-
file_path = os.path.join(folder_path, file)
|
25 |
-
|
26 |
-
try:
|
27 |
-
# Read the file based on its extension
|
28 |
-
if file.endswith('.csv'):
|
29 |
-
df = pd.read_csv(file_path)
|
30 |
-
else:
|
31 |
-
df = pd.read_excel(file_path)
|
32 |
-
|
33 |
-
# Extract non-empty values from column 2 and append them
|
34 |
-
context_data.extend(df.iloc[:, 2].dropna().astype(str).tolist())
|
35 |
-
|
36 |
-
except Exception as e:
|
37 |
-
print(f"Error processing file {file}: {str(e)}")
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
import os
|
43 |
-
import PyPDF2
|
44 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
45 |
-
from langchain.schema import Document
|
46 |
-
|
47 |
-
def extract_text_from_pdf(pdf_path):
|
48 |
-
"""Extract text from a PDF file."""
|
49 |
-
try:
|
50 |
-
with open(pdf_path, "rb") as file:
|
51 |
-
reader = PyPDF2.PdfReader(file)
|
52 |
-
return "".join(page.extract_text() or "" for page in reader.pages)
|
53 |
-
except Exception as e:
|
54 |
-
print(f"Error with {pdf_path}: {e}")
|
55 |
-
return ""
|
56 |
-
|
57 |
-
pdf_files = [f for f in files if f.lower().endswith(".pdf")]
|
58 |
-
|
59 |
-
# Process PDFs
|
60 |
-
documents = []
|
61 |
-
for file in pdf_files:
|
62 |
-
print(f"Processing: {file}")
|
63 |
-
pdf_path = os.path.join(folder_path, file)
|
64 |
-
text = extract_text_from_pdf(pdf_path)
|
65 |
-
if text:
|
66 |
-
documents.append(Document(page_content=text, metadata={"source": file}))
|
67 |
-
|
68 |
-
# Split into chunks
|
69 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
70 |
-
separators=['\n\n', '\n', '.', ','],
|
71 |
-
chunk_size=500,
|
72 |
-
chunk_overlap=50
|
73 |
-
)
|
74 |
-
chunks = text_splitter.split_documents(documents)
|
75 |
-
text_only_chunks = [chunk.page_content for chunk in chunks]
|
76 |
-
|
77 |
-
|
78 |
-
from urllib.parse import urljoin, urlparse
|
79 |
import requests
|
|
|
80 |
from io import BytesIO
|
|
|
|
|
81 |
|
|
|
|
|
|
|
|
|
82 |
from bs4 import BeautifulSoup
|
83 |
-
from langchain_core.prompts import ChatPromptTemplate
|
84 |
-
import gradio as gr
|
85 |
-
|
86 |
-
|
87 |
-
def scrape_websites(base_urls):
|
88 |
-
try:
|
89 |
-
visited_links = set() # To avoid revisiting the same link
|
90 |
-
content_by_url = {} # Store content from each URL
|
91 |
-
|
92 |
-
for base_url in base_urls:
|
93 |
-
if not base_url.strip():
|
94 |
-
continue # Skip empty or invalid URLs
|
95 |
-
|
96 |
-
print(f"Scraping base URL: {base_url}")
|
97 |
-
html_content = fetch_page_content(base_url)
|
98 |
-
if html_content:
|
99 |
-
cleaned_content = clean_body_content(html_content)
|
100 |
-
content_by_url[base_url] = cleaned_content
|
101 |
-
visited_links.add(base_url)
|
102 |
-
|
103 |
-
# Extract and process all internal links
|
104 |
-
soup = BeautifulSoup(html_content, "html.parser")
|
105 |
-
links = extract_internal_links(base_url, soup)
|
106 |
-
|
107 |
-
for link in links:
|
108 |
-
if link not in visited_links:
|
109 |
-
print(f"Scraping link: {link}")
|
110 |
-
page_content = fetch_page_content(link)
|
111 |
-
if page_content:
|
112 |
-
cleaned_content = clean_body_content(page_content)
|
113 |
-
content_by_url[link] = cleaned_content
|
114 |
-
visited_links.add(link)
|
115 |
-
|
116 |
-
# If the link is a PDF file, extract its content
|
117 |
-
if link.lower().endswith('.pdf'):
|
118 |
-
print(f"Extracting PDF content from: {link}")
|
119 |
-
pdf_content = extract_pdf_text(link)
|
120 |
-
if pdf_content:
|
121 |
-
content_by_url[link] = pdf_content
|
122 |
-
|
123 |
-
return content_by_url
|
124 |
-
|
125 |
-
except Exception as e:
|
126 |
-
print(f"Error during scraping: {e}")
|
127 |
-
return {}
|
128 |
-
|
129 |
-
|
130 |
-
def fetch_page_content(url):
|
131 |
-
try:
|
132 |
-
response = requests.get(url, timeout=10)
|
133 |
-
response.raise_for_status()
|
134 |
-
return response.text
|
135 |
-
except requests.exceptions.RequestException as e:
|
136 |
-
print(f"Error fetching {url}: {e}")
|
137 |
-
return None
|
138 |
-
|
139 |
-
|
140 |
-
def extract_internal_links(base_url, soup):
|
141 |
-
links = set()
|
142 |
-
for anchor in soup.find_all("a", href=True):
|
143 |
-
href = anchor["href"]
|
144 |
-
full_url = urljoin(base_url, href)
|
145 |
-
if is_internal_link(base_url, full_url):
|
146 |
-
links.add(full_url)
|
147 |
-
return links
|
148 |
-
|
149 |
-
|
150 |
-
def is_internal_link(base_url, link_url):
|
151 |
-
base_netloc = urlparse(base_url).netloc
|
152 |
-
link_netloc = urlparse(link_url).netloc
|
153 |
-
return base_netloc == link_netloc
|
154 |
-
|
155 |
-
|
156 |
-
def extract_pdf_text(pdf_url):
|
157 |
-
try:
|
158 |
-
response = requests.get(pdf_url)
|
159 |
-
response.raise_for_status()
|
160 |
-
|
161 |
-
# Open the PDF from the response content
|
162 |
-
with BytesIO(response.content) as file:
|
163 |
-
reader = PdfReader(file)
|
164 |
-
pdf_text = ""
|
165 |
-
for page in reader.pages:
|
166 |
-
pdf_text += page.extract_text()
|
167 |
-
|
168 |
-
return pdf_text if pdf_text else None
|
169 |
-
except requests.exceptions.RequestException as e:
|
170 |
-
print(f"Error fetching PDF {pdf_url}: {e}")
|
171 |
-
return None
|
172 |
-
except Exception as e:
|
173 |
-
print(f"Error reading PDF {pdf_url}: {e}")
|
174 |
-
return None
|
175 |
-
|
176 |
-
|
177 |
-
def clean_body_content(html_content):
|
178 |
-
soup = BeautifulSoup(html_content, "html.parser")
|
179 |
-
|
180 |
-
# Remove scripts and styles
|
181 |
-
for script_or_style in soup(["script", "style"]):
|
182 |
-
script_or_style.extract()
|
183 |
-
|
184 |
-
# Get text and clean up
|
185 |
-
cleaned_content = soup.get_text(separator="\n")
|
186 |
-
cleaned_content = "\n".join(
|
187 |
-
line.strip() for line in cleaned_content.splitlines() if line.strip()
|
188 |
-
)
|
189 |
-
return cleaned_content
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
# if __name__ == "__main__":
|
194 |
-
# website = [
|
195 |
-
# #"https://www.rib.gov.rw/index.php?id=371",
|
196 |
-
# "https://haguruka.org.rw/our-work/"
|
197 |
-
# ]
|
198 |
-
# all_content = scrape_websites(website)
|
199 |
-
|
200 |
-
# # Temporary list to store (url, content) tuples
|
201 |
-
# temp_list = []
|
202 |
-
|
203 |
-
# # Process and store each URL with its content
|
204 |
-
# for url, content in all_content.items():
|
205 |
-
# temp_list.append((url, content))
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
# processed_texts = []
|
210 |
-
|
211 |
-
# # Process each element in the temporary list
|
212 |
-
# for element in temp_list:
|
213 |
-
# if isinstance(element, tuple):
|
214 |
-
# url, content = element # Unpack the tuple
|
215 |
-
# processed_texts.append(f"url: {url}, content: {content}")
|
216 |
-
# elif isinstance(element, str):
|
217 |
-
# processed_texts.append(element)
|
218 |
-
# else:
|
219 |
-
# processed_texts.append(str(element))
|
220 |
-
|
221 |
-
# def chunk_string(s, chunk_size=2000):
|
222 |
-
# return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
|
223 |
-
|
224 |
-
# # List to store the chunks
|
225 |
-
# chunked_texts = []
|
226 |
-
|
227 |
-
# for text in processed_texts:
|
228 |
-
# chunked_texts.extend(chunk_string(text))
|
229 |
-
|
230 |
-
data = []
|
231 |
-
data.extend(context_data)
|
232 |
-
#data.extend([item for item in text_only_chunks if item not in data])
|
233 |
-
#data.extend([item for item in chunked_texts if item not in data])
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
#from langchain_community.vectorstores import Chroma
|
238 |
-
from langchain_chroma import Chroma
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
vectorstore = Chroma(
|
243 |
-
collection_name="Dataset",
|
244 |
-
embedding_function=embed_model,
|
245 |
-
)
|
246 |
-
|
247 |
-
vectorstore.get().keys()
|
248 |
-
|
249 |
-
# add data to vector nstore
|
250 |
-
vectorstore.add_texts(data)
|
251 |
-
|
252 |
-
|
253 |
-
api= os.environ.get('V2')
|
254 |
-
|
255 |
|
|
|
256 |
from openai import OpenAI
|
|
|
|
|
257 |
from langchain_core.prompts import PromptTemplate
|
258 |
from langchain_core.output_parsers import StrOutputParser
|
259 |
from langchain_core.runnables import RunnablePassthrough
|
260 |
-
|
261 |
-
from
|
262 |
-
import time
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
#template for GBV support chatbot
|
267 |
-
template = ("""
|
268 |
-
You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
|
269 |
-
You are a conversational AI. Respond directly and naturally to the user's input without displaying any system messages, backend processes, or 'thinking...' responses. Only provide the final response in a human-like and engaging manner.
|
270 |
-
|
271 |
-
When responding follow these guidelines:
|
272 |
-
|
273 |
-
1. **Emotional Intelligence**
|
274 |
-
- Validate feelings without judgment (e.g., "It is completely understandable to feel this way")
|
275 |
-
- Offer reassurance when appropriate, always centered on empowerment
|
276 |
-
- Adjust your tone based on the emotional state conveyed
|
277 |
-
|
278 |
-
2. **Personalized Communication**
|
279 |
-
- Avoid contractions (e.g., use I am instead of I'm)
|
280 |
-
- Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
|
281 |
-
- Use selective emojis (😊, 🤗, ❤️) only when tone-appropriate and not during crisis discussions
|
282 |
-
- Balance warmth with professionalism
|
283 |
-
|
284 |
-
3. **Conversation Management**
|
285 |
-
- Refer to {conversation_history} to maintain continuity and avoid repetition
|
286 |
-
- Keep responses concise unless greater detail is explicitly requested
|
287 |
-
- Use clear paragraph breaks for readability
|
288 |
-
- Prioritize immediate concerns before addressing secondary issues
|
289 |
-
|
290 |
-
4. **Information Delivery**
|
291 |
-
- Extract only relevant information from {context} that directly addresses the question
|
292 |
-
- Present information in accessible, non-technical language
|
293 |
-
- Organize resource recommendations in order of relevance and accessibility
|
294 |
-
- Provide links [URL] only when specifically requested, prefaced with clear descriptions
|
295 |
-
- When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
|
296 |
-
|
297 |
-
5. **Safety and Ethics**
|
298 |
-
- Prioritize user safety in all responses
|
299 |
-
- Never generate speculative content about their specific situation
|
300 |
-
- Avoid phrases that could minimize experiences or create pressure
|
301 |
-
- Include gentle reminders about professional help when discussing serious issues
|
302 |
-
|
303 |
-
Your response should balance emotional support with practical guidance.
|
304 |
-
|
305 |
-
**Context:** {context}
|
306 |
-
**User's Question:** {question}
|
307 |
-
**Your Response:**
|
308 |
-
""")
|
309 |
-
|
310 |
-
rag_prompt = PromptTemplate.from_template(template)
|
311 |
-
|
312 |
-
retriever = vectorstore.as_retriever()
|
313 |
|
314 |
-
import
|
|
|
315 |
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
-
model_name = "facebook/nllb-200-distilled-600M"
|
319 |
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
-
headers = {
|
323 |
-
"Authorization": f"Bearer {API_TOKEN}"
|
324 |
-
}
|
325 |
|
326 |
-
|
327 |
-
"""
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
}
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
return result[
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
return text # Return original text if translation fails
|
348 |
|
349 |
|
350 |
class OpenRouterLLM:
|
|
|
|
|
351 |
def __init__(self, key: str):
|
352 |
try:
|
353 |
self.client = OpenAI(
|
354 |
base_url="https://openrouter.ai/api/v1",
|
355 |
-
api_key=key
|
356 |
)
|
357 |
self.headers = {
|
358 |
"HTTP-Referer": "http://localhost:3000",
|
@@ -363,11 +247,10 @@ class OpenRouterLLM:
|
|
363 |
raise
|
364 |
|
365 |
def stream(self, prompt: str) -> Iterator[str]:
|
|
|
366 |
try:
|
367 |
completion = self.client.chat.completions.create(
|
368 |
-
#model="deepseek/deepseek-r1-distill-llama-70b:free",
|
369 |
model="meta-llama/llama-3.3-70b-instruct:free",
|
370 |
-
#model="google/gemini-2.5-pro-exp-03-25:free",
|
371 |
messages=[{"role": "user", "content": prompt}],
|
372 |
stream=True
|
373 |
)
|
@@ -381,13 +264,16 @@ class OpenRouterLLM:
|
|
381 |
|
382 |
|
383 |
class UserSession:
|
384 |
-
|
|
|
|
|
385 |
self.current_user = None
|
386 |
self.welcome_message = None
|
387 |
-
self.conversation_history = []
|
388 |
-
self.llm = llm
|
389 |
-
|
390 |
-
def set_user(self, user_info):
|
|
|
391 |
self.current_user = user_info
|
392 |
self.set_welcome_message(user_info.get("Nickname", "Guest"))
|
393 |
# Initialize conversation history with welcome message
|
@@ -395,164 +281,80 @@ class UserSession:
|
|
395 |
self.conversation_history = [
|
396 |
{"role": "assistant", "content": welcome},
|
397 |
]
|
398 |
-
|
399 |
-
def get_user(self):
|
|
|
400 |
return self.current_user
|
401 |
-
|
402 |
-
def set_welcome_message(self,
|
403 |
-
"""Set a dynamic welcome message using the
|
404 |
prompt = (
|
405 |
-
f"Create a very brief welcome message for {
|
406 |
f"The message should: "
|
407 |
-
f"1. Welcome {
|
408 |
f"2. Emphasize that this is a safe and trusted space. "
|
409 |
f"3. Highlight specialized support for gender-based violence (GBV) and legal assistance. "
|
410 |
f"4. Use a tone that is warm, reassuring, and professional. "
|
411 |
f"5. Keep the message concise and impactful."
|
412 |
)
|
413 |
-
|
414 |
-
# Use the
|
415 |
-
welcome = "".join(self.llm.stream(prompt))
|
416 |
-
|
417 |
-
|
|
|
|
|
|
|
|
|
418 |
# Format the message with HTML styling
|
419 |
self.welcome_message = (
|
420 |
f"<div style='font-size: 20px;'>"
|
421 |
f"{welcome_text}"
|
422 |
f"</div>"
|
423 |
)
|
424 |
-
|
425 |
-
def get_welcome_message(self):
|
|
|
426 |
return self.welcome_message
|
427 |
-
|
428 |
-
def add_to_history(self, role, message):
|
429 |
-
"""Add a message to the conversation history"""
|
430 |
self.conversation_history.append({"role": role, "content": message})
|
431 |
-
|
432 |
-
def get_conversation_history(self):
|
433 |
-
"""Get the full conversation history"""
|
434 |
return self.conversation_history
|
435 |
-
|
436 |
-
def get_formatted_history(self):
|
437 |
-
"""Get conversation history formatted as a string for the LLM"""
|
438 |
formatted_history = ""
|
439 |
for entry in self.conversation_history:
|
440 |
role = "User" if entry["role"] == "user" else "Assistant"
|
441 |
formatted_history += f"{role}: {entry['content']}\n\n"
|
442 |
return formatted_history
|
443 |
|
444 |
-
api_key =api
|
445 |
-
llm_instance = OpenRouterLLM(key=api_key)
|
446 |
-
#llm_instance = model
|
447 |
-
user_session = UserSession(llm_instance)
|
448 |
-
|
449 |
-
|
450 |
-
def collect_user_info(Nickname):
|
451 |
-
if not Nickname:
|
452 |
-
return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []
|
453 |
-
|
454 |
-
# Store user info for chat session
|
455 |
-
user_info = {
|
456 |
-
"Nickname": Nickname,
|
457 |
-
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
|
458 |
-
}
|
459 |
-
|
460 |
-
# Set user in session
|
461 |
-
user_session.set_user(user_info)
|
462 |
-
|
463 |
-
# Generate welcome message
|
464 |
-
welcome_message = user_session.get_welcome_message()
|
465 |
-
|
466 |
-
# Add initial message to start the conversation
|
467 |
-
chat_history = add_initial_message([(None, welcome_message)])
|
468 |
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
# Create RAG chain with user context and conversation history
|
479 |
-
def create_rag_chain(retriever, template, api_key):
|
480 |
-
llm = OpenRouterLLM(api_key)
|
481 |
-
rag_prompt = PromptTemplate.from_template(template)
|
482 |
-
|
483 |
-
def stream_func(input_dict):
|
484 |
-
# Get context using the retriever's invoke method
|
485 |
-
context = retriever.invoke(input_dict["question"])
|
486 |
-
context_str = "\n".join([doc.page_content for doc in context])
|
487 |
-
|
488 |
-
# Get user info from the session
|
489 |
-
user_info = user_session.get_user() or {}
|
490 |
-
first_name = user_info.get("Nickname", "User")
|
491 |
|
492 |
-
#
|
493 |
-
|
494 |
-
|
495 |
-
#
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
first_name=first_name,
|
500 |
-
conversation_history=conversation_history
|
501 |
)
|
502 |
-
|
503 |
-
#
|
504 |
-
|
505 |
-
|
506 |
-
return stream_func
|
507 |
-
|
508 |
-
# def rag_memory_stream(message, history):
|
509 |
-
# # Add user message to history
|
510 |
-
# user_session.add_to_history("user", message)
|
511 |
-
|
512 |
-
# # Initialize with empty response
|
513 |
-
# partial_text = ""
|
514 |
-
# full_response = ""
|
515 |
-
|
516 |
-
# # Use the rag_chain with the question
|
517 |
-
# for new_text in rag_chain({"question": message}):
|
518 |
-
# partial_text += new_text
|
519 |
-
# full_response = partial_text
|
520 |
-
# yield partial_text
|
521 |
-
|
522 |
-
# # After generating the complete response, add it to history
|
523 |
-
# user_session.add_to_history("assistant", full_response)
|
524 |
-
|
525 |
-
|
526 |
-
def rag_memory_stream(message, history, user_lang="kin_Latn", system_lang="eng_Latn"):
|
527 |
-
english_message = translate_text(message, user_lang, system_lang)
|
528 |
-
|
529 |
-
user_session.add_to_history("user", english_message)
|
530 |
-
|
531 |
-
full_response = ""
|
532 |
-
|
533 |
-
for new_text in rag_chain({"question": english_message}):
|
534 |
-
full_response += new_text
|
535 |
-
|
536 |
-
|
537 |
-
translated_response = translate_text(full_response, system_lang, user_lang)
|
538 |
-
|
539 |
-
user_session.add_to_history("assistant", full_response)
|
540 |
-
|
541 |
-
yield translated_response
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
import gradio as gr
|
546 |
-
|
547 |
-
|
548 |
-
api_key = api
|
549 |
-
|
550 |
-
def chatbot_interface():
|
551 |
-
api_key = api
|
552 |
-
|
553 |
-
global template
|
554 |
-
|
555 |
-
template = """
|
556 |
You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your responses must be based EXCLUSIVELY on the information provided in the context. Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
|
557 |
|
558 |
**Previous conversation:** {conversation_history}
|
@@ -584,7 +386,6 @@ def chatbot_interface():
|
|
584 |
- Extract only relevant information from {context} that directly addresses the question
|
585 |
- Present information in accessible, non-technical language
|
586 |
- When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
|
587 |
-
|
588 |
|
589 |
6. **Safety and Ethics**
|
590 |
- Do not generate any speculative content or advice not supported by the context
|
@@ -595,115 +396,219 @@ def chatbot_interface():
|
|
595 |
**Context:** {context}
|
596 |
**User's Question:** {question}
|
597 |
**Your Response:**
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
615 |
)
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
fn=rag_memory_stream,
|
626 |
-
title="Chat with GBVR",
|
627 |
-
fill_height=True
|
628 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
629 |
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
--background: #f0f0f0;
|
643 |
-
--text: #000000;
|
644 |
-
}
|
645 |
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
height: 100vh;
|
651 |
-
display: flex;
|
652 |
-
flex-direction: column;
|
653 |
-
justify-content: center;
|
654 |
-
align-items: center;
|
655 |
-
background: var(--background);
|
656 |
-
color: var(--text);
|
657 |
-
}
|
658 |
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
|
|
|
|
|
|
|
|
663 |
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
border-radius: 8px;
|
678 |
-
transition: all 0.3s ease;
|
679 |
-
border: 1px solid rgba(0, 0, 0, 0.1);
|
680 |
-
}
|
681 |
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
|
|
|
|
|
|
686 |
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
padding: 1rem;
|
692 |
-
font-size: 0.9em;
|
693 |
-
}
|
694 |
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
|
|
|
|
699 |
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
|
|
|
|
|
|
704 |
|
705 |
-
|
|
|
|
|
706 |
|
707 |
-
# Launch the interface
|
708 |
if __name__ == "__main__":
|
709 |
-
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import requests
|
3 |
+
import time
|
4 |
from io import BytesIO
|
5 |
+
from typing import Iterator, List, Dict, Any, Optional
|
6 |
+
from urllib.parse import urljoin, urlparse
|
7 |
|
8 |
+
# Data processing imports
|
9 |
+
import pandas as pd
|
10 |
+
import PyPDF2
|
11 |
+
from PyPDF2 import PdfReader
|
12 |
from bs4 import BeautifulSoup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# AI and NLP imports
|
15 |
from openai import OpenAI
|
16 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
17 |
+
from langchain_chroma import Chroma
|
18 |
from langchain_core.prompts import PromptTemplate
|
19 |
from langchain_core.output_parsers import StrOutputParser
|
20 |
from langchain_core.runnables import RunnablePassthrough
|
21 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
22 |
+
from langchain.schema import Document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# UI import
|
25 |
+
import gradio as gr
|
26 |
|
27 |
+
class DataProcessor:
|
28 |
+
"""Handles processing of various data sources including CSV, Excel, PDF, and web content."""
|
29 |
+
|
30 |
+
def __init__(self, folder_path: str = "./"):
|
31 |
+
self.folder_path = folder_path
|
32 |
+
self.files = os.listdir(folder_path)
|
33 |
+
|
34 |
+
def process_tabular_data(self) -> List[str]:
|
35 |
+
"""Process CSV and Excel files to extract data."""
|
36 |
+
context_data = []
|
37 |
+
data_files = [f for f in self.files if f.endswith(('.csv', '.xlsx', '.xls'))]
|
38 |
+
|
39 |
+
for f, file in enumerate(data_files, 1):
|
40 |
+
print(f"\nProcessing file {f}: {file}")
|
41 |
+
file_path = os.path.join(self.folder_path, file)
|
42 |
+
|
43 |
+
try:
|
44 |
+
# Read file based on extension
|
45 |
+
if file.endswith('.csv'):
|
46 |
+
df = pd.read_csv(file_path)
|
47 |
+
else:
|
48 |
+
df = pd.read_excel(file_path)
|
49 |
+
|
50 |
+
# Extract non-empty values from column 2
|
51 |
+
context_data.extend(df.iloc[:, 2].dropna().astype(str).tolist())
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error processing file {file}: {str(e)}")
|
54 |
+
|
55 |
+
return context_data
|
56 |
+
|
57 |
+
def extract_text_from_pdf(self, pdf_path: str) -> str:
|
58 |
+
"""Extract text content from a PDF file."""
|
59 |
+
try:
|
60 |
+
with open(pdf_path, "rb") as file:
|
61 |
+
reader = PyPDF2.PdfReader(file)
|
62 |
+
return "".join(page.extract_text() or "" for page in reader.pages)
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error with {pdf_path}: {e}")
|
65 |
+
return ""
|
66 |
+
|
67 |
+
def process_pdf_files(self) -> List[Document]:
|
68 |
+
"""Process all PDF files and return documents."""
|
69 |
+
pdf_files = [f for f in self.files if f.lower().endswith(".pdf")]
|
70 |
+
documents = []
|
71 |
+
|
72 |
+
for file in pdf_files:
|
73 |
+
print(f"Processing: {file}")
|
74 |
+
pdf_path = os.path.join(self.folder_path, file)
|
75 |
+
text = self.extract_text_from_pdf(pdf_path)
|
76 |
+
if text:
|
77 |
+
documents.append(Document(page_content=text, metadata={"source": file}))
|
78 |
+
|
79 |
+
return documents
|
80 |
+
|
81 |
+
def split_documents(self, documents: List[Document], chunk_size: int = 500) -> List[str]:
|
82 |
+
"""Split documents into manageable chunks."""
|
83 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
84 |
+
separators=['\n\n', '\n', '.', ','],
|
85 |
+
chunk_size=chunk_size,
|
86 |
+
chunk_overlap=50
|
87 |
+
)
|
88 |
+
chunks = text_splitter.split_documents(documents)
|
89 |
+
return [chunk.page_content for chunk in chunks]
|
90 |
+
|
91 |
+
def extract_pdf_text_from_url(self, pdf_url: str) -> Optional[str]:
|
92 |
+
"""Extract text from a PDF URL."""
|
93 |
+
try:
|
94 |
+
response = requests.get(pdf_url)
|
95 |
+
response.raise_for_status()
|
96 |
+
|
97 |
+
with BytesIO(response.content) as file:
|
98 |
+
reader = PdfReader(file)
|
99 |
+
pdf_text = ""
|
100 |
+
for page in reader.pages:
|
101 |
+
pdf_text += page.extract_text()
|
102 |
+
|
103 |
+
return pdf_text if pdf_text else None
|
104 |
+
except requests.exceptions.RequestException as e:
|
105 |
+
print(f"Error fetching PDF {pdf_url}: {e}")
|
106 |
+
return None
|
107 |
+
except Exception as e:
|
108 |
+
print(f"Error reading PDF {pdf_url}: {e}")
|
109 |
+
return None
|
110 |
|
|
|
111 |
|
112 |
+
class WebScraper:
|
113 |
+
"""Web scraping functionality for collecting data from websites."""
|
114 |
+
|
115 |
+
def scrape_websites(self, base_urls: List[str]) -> Dict[str, str]:
|
116 |
+
"""Scrape content from a list of base URLs and their internal links."""
|
117 |
+
try:
|
118 |
+
visited_links = set()
|
119 |
+
content_by_url = {}
|
120 |
+
|
121 |
+
for base_url in base_urls:
|
122 |
+
if not base_url.strip():
|
123 |
+
continue
|
124 |
+
|
125 |
+
print(f"Scraping base URL: {base_url}")
|
126 |
+
html_content = self.fetch_page_content(base_url)
|
127 |
+
if html_content:
|
128 |
+
cleaned_content = self.clean_body_content(html_content)
|
129 |
+
content_by_url[base_url] = cleaned_content
|
130 |
+
visited_links.add(base_url)
|
131 |
+
|
132 |
+
# Extract and process internal links
|
133 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
134 |
+
links = self.extract_internal_links(base_url, soup)
|
135 |
+
|
136 |
+
for link in links:
|
137 |
+
if link not in visited_links:
|
138 |
+
print(f"Scraping link: {link}")
|
139 |
+
page_content = self.fetch_page_content(link)
|
140 |
+
if page_content:
|
141 |
+
cleaned_content = self.clean_body_content(page_content)
|
142 |
+
content_by_url[link] = cleaned_content
|
143 |
+
visited_links.add(link)
|
144 |
+
|
145 |
+
# Extract PDF content if link is a PDF
|
146 |
+
if link.lower().endswith('.pdf'):
|
147 |
+
print(f"Extracting PDF content from: {link}")
|
148 |
+
pdf_processor = DataProcessor()
|
149 |
+
pdf_content = pdf_processor.extract_pdf_text_from_url(link)
|
150 |
+
if pdf_content:
|
151 |
+
content_by_url[link] = pdf_content
|
152 |
+
|
153 |
+
return content_by_url
|
154 |
+
except Exception as e:
|
155 |
+
print(f"Error during scraping: {e}")
|
156 |
+
return {}
|
157 |
+
|
158 |
+
def fetch_page_content(self, url: str) -> Optional[str]:
|
159 |
+
"""Fetch HTML content from a URL."""
|
160 |
+
try:
|
161 |
+
response = requests.get(url, timeout=10)
|
162 |
+
response.raise_for_status()
|
163 |
+
return response.text
|
164 |
+
except requests.exceptions.RequestException as e:
|
165 |
+
print(f"Error fetching {url}: {e}")
|
166 |
+
return None
|
167 |
+
|
168 |
+
def extract_internal_links(self, base_url: str, soup: BeautifulSoup) -> set:
|
169 |
+
"""Extract internal links from a BeautifulSoup object."""
|
170 |
+
links = set()
|
171 |
+
for anchor in soup.find_all("a", href=True):
|
172 |
+
href = anchor["href"]
|
173 |
+
full_url = urljoin(base_url, href)
|
174 |
+
if self.is_internal_link(base_url, full_url):
|
175 |
+
links.add(full_url)
|
176 |
+
return links
|
177 |
+
|
178 |
+
def is_internal_link(self, base_url: str, link_url: str) -> bool:
|
179 |
+
"""Check if a link is internal to the base URL."""
|
180 |
+
base_netloc = urlparse(base_url).netloc
|
181 |
+
link_netloc = urlparse(link_url).netloc
|
182 |
+
return base_netloc == link_netloc
|
183 |
+
|
184 |
+
def clean_body_content(self, html_content: str) -> str:
|
185 |
+
"""Clean HTML content to extract useful text."""
|
186 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
187 |
+
|
188 |
+
# Remove scripts and styles
|
189 |
+
for script_or_style in soup(["script", "style"]):
|
190 |
+
script_or_style.extract()
|
191 |
+
|
192 |
+
# Get text and clean up
|
193 |
+
cleaned_content = soup.get_text(separator="\n")
|
194 |
+
cleaned_content = "\n".join(
|
195 |
+
line.strip() for line in cleaned_content.splitlines() if line.strip()
|
196 |
+
)
|
197 |
+
return cleaned_content
|
198 |
|
|
|
|
|
|
|
199 |
|
200 |
+
class TranslationService:
|
201 |
+
"""Translation service using Hugging Face API."""
|
202 |
+
|
203 |
+
def __init__(self, api_token: str, model_name: str = "facebook/nllb-200-distilled-600M"):
|
204 |
+
self.model_name = model_name
|
205 |
+
self.url = f"https://api-inference.huggingface.co/models/{model_name}"
|
206 |
+
self.headers = {"Authorization": f"Bearer {api_token}"}
|
207 |
+
|
208 |
+
def translate_text(self, text: str, src_lang: str, tgt_lang: str) -> str:
|
209 |
+
"""Translate text using Hugging Face API."""
|
210 |
+
response = requests.post(
|
211 |
+
self.url,
|
212 |
+
headers=self.headers,
|
213 |
+
json={
|
214 |
+
"inputs": text,
|
215 |
+
"parameters": {
|
216 |
+
"src_lang": src_lang,
|
217 |
+
"tgt_lang": tgt_lang
|
218 |
+
}
|
219 |
}
|
220 |
+
)
|
221 |
+
|
222 |
+
if response.status_code == 200:
|
223 |
+
result = response.json()
|
224 |
+
if isinstance(result, list) and len(result) > 0:
|
225 |
+
return result[0]['translation_text']
|
226 |
+
return result['translation_text']
|
227 |
+
else:
|
228 |
+
print(f"Translation error: {response.status_code}, {response.text}")
|
229 |
+
return text # Return original text if translation fails
|
|
|
230 |
|
231 |
|
232 |
class OpenRouterLLM:
|
233 |
+
"""LLM service using OpenRouter API."""
|
234 |
+
|
235 |
def __init__(self, key: str):
|
236 |
try:
|
237 |
self.client = OpenAI(
|
238 |
base_url="https://openrouter.ai/api/v1",
|
239 |
+
api_key=key
|
240 |
)
|
241 |
self.headers = {
|
242 |
"HTTP-Referer": "http://localhost:3000",
|
|
|
247 |
raise
|
248 |
|
249 |
def stream(self, prompt: str) -> Iterator[str]:
|
250 |
+
"""Stream response from LLM."""
|
251 |
try:
|
252 |
completion = self.client.chat.completions.create(
|
|
|
253 |
model="meta-llama/llama-3.3-70b-instruct:free",
|
|
|
254 |
messages=[{"role": "user", "content": prompt}],
|
255 |
stream=True
|
256 |
)
|
|
|
264 |
|
265 |
|
266 |
class UserSession:
|
267 |
+
"""Manage user session information and conversation history."""
|
268 |
+
|
269 |
+
def __init__(self, llm: OpenRouterLLM):
|
270 |
self.current_user = None
|
271 |
self.welcome_message = None
|
272 |
+
self.conversation_history = []
|
273 |
+
self.llm = llm
|
274 |
+
|
275 |
+
def set_user(self, user_info: Dict[str, Any]) -> None:
|
276 |
+
"""Set current user and initialize welcome message."""
|
277 |
self.current_user = user_info
|
278 |
self.set_welcome_message(user_info.get("Nickname", "Guest"))
|
279 |
# Initialize conversation history with welcome message
|
|
|
281 |
self.conversation_history = [
|
282 |
{"role": "assistant", "content": welcome},
|
283 |
]
|
284 |
+
|
285 |
+
def get_user(self) -> Dict[str, Any]:
|
286 |
+
"""Get current user information."""
|
287 |
return self.current_user
|
288 |
+
|
289 |
+
def set_welcome_message(self, nickname: str, src_lang: str = "eng_Latn", tgt_lang: str = "kin_Latn") -> None:
|
290 |
+
"""Set a dynamic welcome message using the LLM."""
|
291 |
prompt = (
|
292 |
+
f"Create a very brief welcome message for {nickname}. "
|
293 |
f"The message should: "
|
294 |
+
f"1. Welcome {nickname} warmly and professionally. "
|
295 |
f"2. Emphasize that this is a safe and trusted space. "
|
296 |
f"3. Highlight specialized support for gender-based violence (GBV) and legal assistance. "
|
297 |
f"4. Use a tone that is warm, reassuring, and professional. "
|
298 |
f"5. Keep the message concise and impactful."
|
299 |
)
|
300 |
+
|
301 |
+
# Use the LLM to generate the message
|
302 |
+
welcome = "".join(self.llm.stream(prompt))
|
303 |
+
|
304 |
+
# Get translation service and translate welcome message
|
305 |
+
api_token = os.environ.get('Token')
|
306 |
+
translator = TranslationService(api_token)
|
307 |
+
welcome_text = translator.translate_text(welcome, src_lang, tgt_lang)
|
308 |
+
|
309 |
# Format the message with HTML styling
|
310 |
self.welcome_message = (
|
311 |
f"<div style='font-size: 20px;'>"
|
312 |
f"{welcome_text}"
|
313 |
f"</div>"
|
314 |
)
|
315 |
+
|
316 |
+
def get_welcome_message(self) -> str:
|
317 |
+
"""Get the welcome message."""
|
318 |
return self.welcome_message
|
319 |
+
|
320 |
+
def add_to_history(self, role: str, message: str) -> None:
|
321 |
+
"""Add a message to the conversation history."""
|
322 |
self.conversation_history.append({"role": role, "content": message})
|
323 |
+
|
324 |
+
def get_conversation_history(self) -> List[Dict[str, str]]:
|
325 |
+
"""Get the full conversation history."""
|
326 |
return self.conversation_history
|
327 |
+
|
328 |
+
def get_formatted_history(self) -> str:
|
329 |
+
"""Get conversation history formatted as a string for the LLM."""
|
330 |
formatted_history = ""
|
331 |
for entry in self.conversation_history:
|
332 |
role = "User" if entry["role"] == "user" else "Assistant"
|
333 |
formatted_history += f"{role}: {entry['content']}\n\n"
|
334 |
return formatted_history
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
+
class GBVSupportChatbot:
|
338 |
+
"""Main chatbot application class."""
|
339 |
+
|
340 |
+
def __init__(self):
|
341 |
+
self.api_key = os.environ.get('V2')
|
342 |
+
self.api_token = os.environ.get('Token')
|
343 |
+
self.llm_instance = OpenRouterLLM(key=self.api_key)
|
344 |
+
self.user_session = UserSession(self.llm_instance)
|
345 |
+
self.translator = TranslationService(self.api_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
+
# Initialize embedding model
|
348 |
+
self.embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
349 |
+
|
350 |
+
# Initialize vector store
|
351 |
+
self.vectorstore = Chroma(
|
352 |
+
collection_name="Dataset",
|
353 |
+
embedding_function=self.embed_model,
|
|
|
|
|
354 |
)
|
355 |
+
|
356 |
+
# Template for GBV support chatbot
|
357 |
+
self.template = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your responses must be based EXCLUSIVELY on the information provided in the context. Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
|
359 |
|
360 |
**Previous conversation:** {conversation_history}
|
|
|
386 |
- Extract only relevant information from {context} that directly addresses the question
|
387 |
- Present information in accessible, non-technical language
|
388 |
- When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
|
|
|
389 |
|
390 |
6. **Safety and Ethics**
|
391 |
- Do not generate any speculative content or advice not supported by the context
|
|
|
396 |
**Context:** {context}
|
397 |
**User's Question:** {question}
|
398 |
**Your Response:**
|
399 |
+
"""
|
400 |
+
|
401 |
+
def load_data(self) -> None:
|
402 |
+
"""Load and process all data sources."""
|
403 |
+
# Process all data sources
|
404 |
+
data_processor = DataProcessor()
|
405 |
+
context_data = data_processor.process_tabular_data()
|
406 |
+
|
407 |
+
# Process PDFs
|
408 |
+
pdf_documents = data_processor.process_pdf_files()
|
409 |
+
text_chunks = data_processor.split_documents(pdf_documents)
|
410 |
+
|
411 |
+
# Combine all data
|
412 |
+
all_data = []
|
413 |
+
all_data.extend(context_data)
|
414 |
+
#all_data.extend([item for item in text_chunks if item not in all_data])
|
415 |
+
|
416 |
+
# Add data to vector store
|
417 |
+
self.vectorstore.add_texts(all_data)
|
418 |
+
|
419 |
+
def create_rag_chain(self):
|
420 |
+
"""Create RAG chain with user context and conversation history."""
|
421 |
+
retriever = self.vectorstore.as_retriever()
|
422 |
+
rag_prompt = PromptTemplate.from_template(self.template)
|
423 |
+
|
424 |
+
def stream_func(input_dict):
|
425 |
+
# Get context using the retriever's invoke method
|
426 |
+
context = retriever.invoke(input_dict["question"])
|
427 |
+
context_str = "\n".join([doc.page_content for doc in context])
|
428 |
+
|
429 |
+
# Get user info from the session
|
430 |
+
user_info = self.user_session.get_user() or {}
|
431 |
+
first_name = user_info.get("Nickname", "User")
|
432 |
+
|
433 |
+
# Get conversation history
|
434 |
+
conversation_history = self.user_session.get_formatted_history()
|
435 |
+
|
436 |
+
# Format prompt with user context and conversation history
|
437 |
+
prompt = rag_prompt.format(
|
438 |
+
context=context_str,
|
439 |
+
question=input_dict["question"],
|
440 |
+
first_name=first_name,
|
441 |
+
conversation_history=conversation_history
|
442 |
+
)
|
443 |
+
|
444 |
+
# Stream response
|
445 |
+
return self.llm_instance.stream(prompt)
|
446 |
+
|
447 |
+
return stream_func
|
448 |
+
|
449 |
+
def collect_user_info(self, nickname: str):
|
450 |
+
"""Collect and process user information."""
|
451 |
+
if not nickname:
|
452 |
+
return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []
|
453 |
+
|
454 |
+
# Store user info for chat session
|
455 |
+
user_info = {
|
456 |
+
"Nickname": nickname,
|
457 |
+
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
|
458 |
+
}
|
459 |
+
|
460 |
+
# Set user in session
|
461 |
+
self.user_session.set_user(user_info)
|
462 |
+
|
463 |
+
# Generate welcome message
|
464 |
+
welcome_message = self.user_session.get_welcome_message()
|
465 |
+
|
466 |
+
# Add initial message to start the conversation
|
467 |
+
chat_history = [(None, welcome_message)]
|
468 |
+
|
469 |
+
# Return welcome message and update UI
|
470 |
+
return welcome_message, gr.update(visible=True), gr.update(visible=False), chat_history
|
471 |
+
|
472 |
+
def rag_memory_stream(self, message: str, history, user_lang: str = "kin_Latn", system_lang: str = "eng_Latn"):
|
473 |
+
"""Process user message, translate, and generate response."""
|
474 |
+
# Translate user message to English
|
475 |
+
english_message = self.translator.translate_text(message, user_lang, system_lang)
|
476 |
+
|
477 |
+
# Add translated message to history
|
478 |
+
self.user_session.add_to_history("user", english_message)
|
479 |
+
|
480 |
+
# Generate response using RAG chain
|
481 |
+
full_response = ""
|
482 |
+
rag_chain = self.create_rag_chain()
|
483 |
+
|
484 |
+
for new_text in rag_chain({"question": english_message}):
|
485 |
+
full_response += new_text
|
486 |
+
|
487 |
+
# Translate response back to user language
|
488 |
+
translated_response = self.translator.translate_text(full_response, system_lang, user_lang)
|
489 |
+
|
490 |
+
# Add response to history
|
491 |
+
self.user_session.add_to_history("assistant", full_response)
|
492 |
+
|
493 |
+
yield translated_response
|
494 |
+
|
495 |
+
def create_chatbot_interface(self):
|
496 |
+
"""Create and configure the chatbot UI."""
|
497 |
+
with gr.Blocks() as demo:
|
498 |
+
# User registration section
|
499 |
+
with gr.Column(visible=True, elem_id="registration_container") as registration_container:
|
500 |
+
gr.Markdown("### Your privacy matters to us! Just share a nickname you feel comfy with to start chatting..")
|
501 |
+
|
502 |
+
with gr.Row():
|
503 |
+
first_name = gr.Textbox(
|
504 |
+
label="Nickname",
|
505 |
+
placeholder="Enter a nickname you feel comfortable with",
|
506 |
+
scale=1,
|
507 |
+
elem_id="input_nickname"
|
508 |
+
)
|
509 |
+
|
510 |
+
with gr.Row():
|
511 |
+
submit_btn = gr.Button("Start Chatting", variant="primary", scale=2)
|
512 |
+
|
513 |
+
response_message = gr.Markdown()
|
514 |
+
|
515 |
+
# Chatbot section (initially hidden)
|
516 |
+
with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
|
517 |
+
chat_interface = gr.ChatInterface(
|
518 |
+
fn=self.rag_memory_stream,
|
519 |
+
title="Chat with GBVR",
|
520 |
+
fill_height=True
|
521 |
)
|
522 |
+
|
523 |
+
# Footer with version info
|
524 |
+
gr.Markdown("Ijwi ry'Ubufasha Chatbot v1.0.0 © 2025")
|
525 |
+
|
526 |
+
# Handle user registration
|
527 |
+
submit_btn.click(
|
528 |
+
self.collect_user_info,
|
529 |
+
inputs=[first_name],
|
530 |
+
outputs=[response_message, chatbot_container, registration_container, chat_interface.chatbot]
|
|
|
|
|
|
|
531 |
)
|
532 |
+
|
533 |
+
# Add CSS styles
|
534 |
+
demo.css = """
|
535 |
+
:root {
|
536 |
+
--background: #f0f0f0;
|
537 |
+
--text: #000000;
|
538 |
+
}
|
539 |
|
540 |
+
body, .gradio-container {
|
541 |
+
margin: 0;
|
542 |
+
padding: 0;
|
543 |
+
width: 100vw;
|
544 |
+
height: 100vh;
|
545 |
+
display: flex;
|
546 |
+
flex-direction: column;
|
547 |
+
justify-content: center;
|
548 |
+
align-items: center;
|
549 |
+
background: var(--background);
|
550 |
+
color: var(--text);
|
551 |
+
}
|
|
|
|
|
|
|
552 |
|
553 |
+
.gradio-container {
|
554 |
+
max-width: 100%;
|
555 |
+
max-height: 100%;
|
556 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
|
558 |
+
.gr-box {
|
559 |
+
background: var(--background);
|
560 |
+
color: var(--text);
|
561 |
+
border-radius: 12px;
|
562 |
+
padding: 2rem;
|
563 |
+
border: 1px solid rgba(0, 0, 0, 0.1);
|
564 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
|
565 |
+
}
|
566 |
|
567 |
+
.gr-button-primary {
|
568 |
+
background: var(--background);
|
569 |
+
color: var(--text);
|
570 |
+
padding: 12px 24px;
|
571 |
+
border-radius: 8px;
|
572 |
+
transition: all 0.3s ease;
|
573 |
+
border: 1px solid rgba(0, 0, 0, 0.1);
|
574 |
+
}
|
575 |
|
576 |
+
.gr-button-primary:hover {
|
577 |
+
transform: translateY(-1px);
|
578 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2);
|
579 |
+
}
|
|
|
|
|
|
|
|
|
580 |
|
581 |
+
footer {
|
582 |
+
text-align: center;
|
583 |
+
color: var(--text);
|
584 |
+
opacity: 0.7;
|
585 |
+
padding: 1rem;
|
586 |
+
font-size: 0.9em;
|
587 |
+
}
|
588 |
|
589 |
+
.gr-markdown h3 {
|
590 |
+
color: var(--text);
|
591 |
+
margin-bottom: 1rem;
|
592 |
+
}
|
|
|
|
|
|
|
593 |
|
594 |
+
.registration-markdown, .chat-title h1 {
|
595 |
+
color: var(--text);
|
596 |
+
}
|
597 |
+
"""
|
598 |
+
|
599 |
+
return demo
|
600 |
|
601 |
+
# Main execution function
|
602 |
+
def main():
|
603 |
+
# Initialize the chatbot
|
604 |
+
chatbot = GBVSupportChatbot()
|
605 |
+
|
606 |
+
# Load data
|
607 |
+
chatbot.load_data()
|
608 |
|
609 |
+
# Create and launch the interface
|
610 |
+
demo = chatbot.create_chatbot_interface()
|
611 |
+
demo.launch(share=True)
|
612 |
|
|
|
613 |
if __name__ == "__main__":
|
614 |
+
main()
|