Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -207,25 +207,29 @@ class TranslationService:
|
|
207 |
|
208 |
def translate_text(self, text: str, src_lang: str, tgt_lang: str) -> str:
|
209 |
"""Translate text using Hugging Face API."""
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
"
|
217 |
-
|
|
|
|
|
218 |
}
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
return result[
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
229 |
return text # Return original text if translation fails
|
230 |
|
231 |
|
@@ -298,24 +302,28 @@ class UserSession:
|
|
298 |
f"5. Keep the message concise and impactful."
|
299 |
)
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
315 |
|
316 |
def get_welcome_message(self) -> str:
|
317 |
"""Get the welcome message."""
|
318 |
-
return self.welcome_message
|
319 |
|
320 |
def add_to_history(self, role: str, message: str) -> None:
|
321 |
"""Add a message to the conversation history."""
|
@@ -338,20 +346,35 @@ class GBVSupportChatbot:
|
|
338 |
"""Main chatbot application class."""
|
339 |
|
340 |
def __init__(self):
|
341 |
-
self.api_key = os.environ.get('V2')
|
342 |
-
self.api_token = os.environ.get('Token')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
self.llm_instance = OpenRouterLLM(key=self.api_key)
|
344 |
self.user_session = UserSession(self.llm_instance)
|
345 |
self.translator = TranslationService(self.api_token)
|
346 |
|
347 |
# Initialize embedding model
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
# Template for GBV support chatbot
|
357 |
self.template = """
|
@@ -400,51 +423,82 @@ class GBVSupportChatbot:
|
|
400 |
|
401 |
def load_data(self) -> None:
|
402 |
"""Load and process all data sources."""
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
def create_rag_chain(self):
|
420 |
"""Create RAG chain with user context and conversation history."""
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
# Get user info from the session
|
430 |
-
user_info = self.user_session.get_user() or {}
|
431 |
-
first_name = user_info.get("Nickname", "User")
|
432 |
|
433 |
-
|
434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
question=input_dict["question"],
|
440 |
-
first_name=first_name,
|
441 |
-
conversation_history=conversation_history
|
442 |
-
)
|
443 |
|
444 |
-
#
|
445 |
-
|
446 |
-
|
447 |
-
|
|
|
448 |
|
449 |
def collect_user_info(self, nickname: str):
|
450 |
"""Collect and process user information."""
|
@@ -463,34 +517,63 @@ class GBVSupportChatbot:
|
|
463 |
# Generate welcome message
|
464 |
welcome_message = self.user_session.get_welcome_message()
|
465 |
|
466 |
-
#
|
467 |
-
chat_history = [
|
468 |
|
469 |
# Return welcome message and update UI
|
470 |
return welcome_message, gr.update(visible=True), gr.update(visible=False), chat_history
|
471 |
|
472 |
def rag_memory_stream(self, message: str, history):
|
473 |
"""Process user message, translate, and generate response."""
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
|
495 |
def create_chatbot_interface(self):
|
496 |
"""Create and configure the chatbot UI."""
|
@@ -514,12 +597,13 @@ class GBVSupportChatbot:
|
|
514 |
|
515 |
# Chatbot section (initially hidden)
|
516 |
with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
|
517 |
-
#
|
518 |
chatbot = gr.Chatbot(
|
519 |
label="Chat with GBVR",
|
520 |
height=500,
|
521 |
show_label=True,
|
522 |
-
elem_id="chat_interface"
|
|
|
523 |
)
|
524 |
|
525 |
with gr.Row():
|
@@ -532,27 +616,22 @@ class GBVSupportChatbot:
|
|
532 |
)
|
533 |
send_btn = gr.Button("Send", variant="primary", scale=1)
|
534 |
|
535 |
-
# Set up the chat behavior
|
536 |
-
def chat_response(message, history):
|
537 |
-
# Clear input
|
538 |
-
yield history, ""
|
539 |
-
# Process message and generate response
|
540 |
-
for response in self.rag_memory_stream(message, history):
|
541 |
-
history.append((message, response))
|
542 |
-
yield history, ""
|
543 |
-
|
544 |
# Configure event handlers
|
545 |
-
msg.submit(
|
546 |
-
|
547 |
inputs=[msg, chatbot],
|
548 |
outputs=[chatbot, msg]
|
549 |
)
|
550 |
-
send_btn.click(
|
551 |
-
|
552 |
inputs=[msg, chatbot],
|
553 |
outputs=[chatbot, msg]
|
554 |
)
|
555 |
|
|
|
|
|
|
|
|
|
556 |
# Footer with version info
|
557 |
gr.Markdown("Ijwi ry'Ubufasha Chatbot v1.0.0 © 2025")
|
558 |
|
@@ -573,7 +652,7 @@ class GBVSupportChatbot:
|
|
573 |
body, .gradio-container {
|
574 |
margin: 0;
|
575 |
padding: 0;
|
576 |
-
width:
|
577 |
height: 100vh;
|
578 |
display: flex;
|
579 |
flex-direction: column;
|
@@ -631,17 +710,29 @@ class GBVSupportChatbot:
|
|
631 |
|
632 |
return demo
|
633 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
634 |
# Main execution function
|
635 |
def main():
|
636 |
# Initialize the chatbot
|
637 |
chatbot = GBVSupportChatbot()
|
638 |
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
|
|
|
|
|
|
|
|
645 |
|
646 |
if __name__ == "__main__":
|
647 |
main()
|
|
|
207 |
|
208 |
def translate_text(self, text: str, src_lang: str, tgt_lang: str) -> str:
|
209 |
"""Translate text using Hugging Face API."""
|
210 |
+
try:
|
211 |
+
response = requests.post(
|
212 |
+
self.url,
|
213 |
+
headers=self.headers,
|
214 |
+
json={
|
215 |
+
"inputs": text,
|
216 |
+
"parameters": {
|
217 |
+
"src_lang": src_lang,
|
218 |
+
"tgt_lang": tgt_lang
|
219 |
+
}
|
220 |
}
|
221 |
+
)
|
222 |
+
|
223 |
+
if response.status_code == 200:
|
224 |
+
result = response.json()
|
225 |
+
if isinstance(result, list) and len(result) > 0:
|
226 |
+
return result[0]['translation_text']
|
227 |
+
return result['translation_text']
|
228 |
+
else:
|
229 |
+
print(f"Translation error: {response.status_code}, {response.text}")
|
230 |
+
return text # Return original text if translation fails
|
231 |
+
except Exception as e:
|
232 |
+
print(f"Translation error: {e}")
|
233 |
return text # Return original text if translation fails
|
234 |
|
235 |
|
|
|
302 |
f"5. Keep the message concise and impactful."
|
303 |
)
|
304 |
|
305 |
+
try:
|
306 |
+
# Use the LLM to generate the message
|
307 |
+
welcome = "".join(list(self.llm.stream(prompt)))
|
308 |
+
|
309 |
+
# Get translation service and translate welcome message
|
310 |
+
api_token = os.environ.get('Token')
|
311 |
+
if not api_token:
|
312 |
+
self.welcome_message = f"Welcome {nickname}! This is a safe space where you can find support and resources."
|
313 |
+
return
|
314 |
+
|
315 |
+
translator = TranslationService(api_token)
|
316 |
+
welcome_text = translator.translate_text(welcome, src_lang, tgt_lang)
|
317 |
+
|
318 |
+
# Format the message with HTML styling
|
319 |
+
self.welcome_message = welcome_text
|
320 |
+
except Exception as e:
|
321 |
+
print(f"Error generating welcome message: {e}")
|
322 |
+
self.welcome_message = f"Welcome {nickname}! This is a safe space where you can find support and resources."
|
323 |
|
324 |
def get_welcome_message(self) -> str:
|
325 |
"""Get the welcome message."""
|
326 |
+
return self.welcome_message or "Welcome! This is a safe space where you can find support."
|
327 |
|
328 |
def add_to_history(self, role: str, message: str) -> None:
|
329 |
"""Add a message to the conversation history."""
|
|
|
346 |
"""Main chatbot application class."""
|
347 |
|
348 |
def __init__(self):
|
349 |
+
self.api_key = os.environ.get('V2', '')
|
350 |
+
self.api_token = os.environ.get('Token', '')
|
351 |
+
|
352 |
+
# Add fallback for missing environment variables
|
353 |
+
if not self.api_key:
|
354 |
+
print("Warning: V2 API key not found in environment variables.")
|
355 |
+
self.api_key = "demo_key" # Use a placeholder value
|
356 |
+
|
357 |
+
if not self.api_token:
|
358 |
+
print("Warning: Token not found in environment variables.")
|
359 |
+
self.api_token = "demo_token" # Use a placeholder value
|
360 |
+
|
361 |
self.llm_instance = OpenRouterLLM(key=self.api_key)
|
362 |
self.user_session = UserSession(self.llm_instance)
|
363 |
self.translator = TranslationService(self.api_token)
|
364 |
|
365 |
# Initialize embedding model
|
366 |
+
try:
|
367 |
+
self.embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
368 |
+
|
369 |
+
# Initialize vector store
|
370 |
+
self.vectorstore = Chroma(
|
371 |
+
collection_name="Dataset",
|
372 |
+
embedding_function=self.embed_model,
|
373 |
+
)
|
374 |
+
except Exception as e:
|
375 |
+
print(f"Error initializing embeddings: {e}")
|
376 |
+
# Create a simple placeholder for vectorstore if initialization fails
|
377 |
+
self.vectorstore = None
|
378 |
|
379 |
# Template for GBV support chatbot
|
380 |
self.template = """
|
|
|
423 |
|
424 |
def load_data(self) -> None:
|
425 |
"""Load and process all data sources."""
|
426 |
+
if not self.vectorstore:
|
427 |
+
print("Warning: Vector store not initialized. Skipping data loading.")
|
428 |
+
return
|
429 |
+
|
430 |
+
try:
|
431 |
+
# Process all data sources
|
432 |
+
data_processor = DataProcessor()
|
433 |
+
context_data = data_processor.process_tabular_data()
|
434 |
+
|
435 |
+
# Process PDFs
|
436 |
+
pdf_documents = data_processor.process_pdf_files()
|
437 |
+
text_chunks = data_processor.split_documents(pdf_documents)
|
438 |
+
|
439 |
+
# Combine all data
|
440 |
+
all_data = []
|
441 |
+
all_data.extend(context_data)
|
442 |
+
all_data.extend([item for item in text_chunks if item not in all_data])
|
443 |
+
|
444 |
+
if all_data:
|
445 |
+
# Add data to vector store
|
446 |
+
self.vectorstore.add_texts(all_data)
|
447 |
+
else:
|
448 |
+
print("Warning: No data found to load into vector store.")
|
449 |
+
except Exception as e:
|
450 |
+
print(f"Error loading data: {e}")
|
451 |
|
452 |
def create_rag_chain(self):
|
453 |
"""Create RAG chain with user context and conversation history."""
|
454 |
+
try:
|
455 |
+
if self.vectorstore:
|
456 |
+
retriever = self.vectorstore.as_retriever()
|
457 |
+
else:
|
458 |
+
# Create a simple fallback if vectorstore is not available
|
459 |
+
retriever = FallbackRetriever()
|
460 |
+
|
461 |
+
rag_prompt = PromptTemplate.from_template(self.template)
|
|
|
|
|
|
|
462 |
|
463 |
+
def stream_func(input_dict):
|
464 |
+
try:
|
465 |
+
# Get context using the retriever's invoke method
|
466 |
+
if self.vectorstore:
|
467 |
+
context = retriever.invoke(input_dict["question"])
|
468 |
+
context_str = "\n".join([doc.page_content for doc in context])
|
469 |
+
else:
|
470 |
+
context_str = "No specific information available on this topic."
|
471 |
+
|
472 |
+
# Get user info from the session
|
473 |
+
user_info = self.user_session.get_user() or {}
|
474 |
+
first_name = user_info.get("Nickname", "User")
|
475 |
+
|
476 |
+
# Get conversation history
|
477 |
+
conversation_history = self.user_session.get_formatted_history()
|
478 |
+
|
479 |
+
# Format prompt with user context and conversation history
|
480 |
+
prompt = rag_prompt.format(
|
481 |
+
context=context_str,
|
482 |
+
question=input_dict["question"],
|
483 |
+
first_name=first_name,
|
484 |
+
conversation_history=conversation_history
|
485 |
+
)
|
486 |
+
|
487 |
+
# Stream response
|
488 |
+
return self.llm_instance.stream(prompt)
|
489 |
+
except Exception as e:
|
490 |
+
print(f"Error in RAG chain: {e}")
|
491 |
+
yield f"I apologize, but I'm having trouble processing your request. Please try again or rephrase your question."
|
492 |
|
493 |
+
return stream_func
|
494 |
+
except Exception as e:
|
495 |
+
print(f"Error creating RAG chain: {e}")
|
|
|
|
|
|
|
|
|
496 |
|
497 |
+
# Return a simple fallback function
|
498 |
+
def fallback_func(input_dict):
|
499 |
+
yield "I apologize, but I'm having technical difficulties. Please try again later."
|
500 |
+
|
501 |
+
return fallback_func
|
502 |
|
503 |
def collect_user_info(self, nickname: str):
|
504 |
"""Collect and process user information."""
|
|
|
517 |
# Generate welcome message
|
518 |
welcome_message = self.user_session.get_welcome_message()
|
519 |
|
520 |
+
# Create welcome message in the new messages format for Gradio chatbot
|
521 |
+
chat_history = [{"role": "assistant", "content": welcome_message}]
|
522 |
|
523 |
# Return welcome message and update UI
|
524 |
return welcome_message, gr.update(visible=True), gr.update(visible=False), chat_history
|
525 |
|
526 |
def rag_memory_stream(self, message: str, history):
|
527 |
"""Process user message, translate, and generate response."""
|
528 |
+
try:
|
529 |
+
# First, yield the current history to show user message
|
530 |
+
history_copy = history.copy()
|
531 |
+
history_copy.append({"role": "user", "content": message})
|
532 |
+
yield history_copy, ""
|
533 |
+
|
534 |
+
# Translate user message to English (from Kinyarwanda by default)
|
535 |
+
try:
|
536 |
+
english_message = self.translator.translate_text(message, "kin_Latn", "eng_Latn")
|
537 |
+
except Exception as e:
|
538 |
+
print(f"Translation error: {e}")
|
539 |
+
english_message = message # Fallback to original message if translation fails
|
540 |
+
|
541 |
+
# Add translated message to history
|
542 |
+
self.user_session.add_to_history("user", english_message)
|
543 |
+
|
544 |
+
# Generate response using RAG chain
|
545 |
+
full_response = ""
|
546 |
+
rag_chain = self.create_rag_chain()
|
547 |
+
|
548 |
+
# Generate chunks of response and update as they come
|
549 |
+
for new_text in rag_chain({"question": english_message}):
|
550 |
+
full_response += new_text
|
551 |
+
|
552 |
+
# Translate response back to user language (Kinyarwanda by default)
|
553 |
+
try:
|
554 |
+
translated_response = self.translator.translate_text(full_response, "eng_Latn", "kin_Latn")
|
555 |
+
except Exception as e:
|
556 |
+
print(f"Translation error: {e}")
|
557 |
+
translated_response = full_response # Fallback to original message if translation fails
|
558 |
+
|
559 |
+
# Update history with current response
|
560 |
+
current_history = history_copy.copy()
|
561 |
+
current_history.append({"role": "assistant", "content": translated_response})
|
562 |
+
yield current_history, ""
|
563 |
+
|
564 |
+
# Add final response to session history
|
565 |
+
self.user_session.add_to_history("assistant", full_response)
|
566 |
+
|
567 |
+
except Exception as e:
|
568 |
+
print(f"Error in chat processing: {e}")
|
569 |
+
# Provide a fallback response if something goes wrong
|
570 |
+
error_history = history.copy()
|
571 |
+
error_history.append({"role": "user", "content": message})
|
572 |
+
error_history.append({
|
573 |
+
"role": "assistant",
|
574 |
+
"content": "I apologize, but I'm having trouble processing your request. Please try again."
|
575 |
+
})
|
576 |
+
yield error_history, ""
|
577 |
|
578 |
def create_chatbot_interface(self):
|
579 |
"""Create and configure the chatbot UI."""
|
|
|
597 |
|
598 |
# Chatbot section (initially hidden)
|
599 |
with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
|
600 |
+
# Use the new messages format for the chatbot
|
601 |
chatbot = gr.Chatbot(
|
602 |
label="Chat with GBVR",
|
603 |
height=500,
|
604 |
show_label=True,
|
605 |
+
elem_id="chat_interface",
|
606 |
+
type="messages" # Use messages format instead of tuples
|
607 |
)
|
608 |
|
609 |
with gr.Row():
|
|
|
616 |
)
|
617 |
send_btn = gr.Button("Send", variant="primary", scale=1)
|
618 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
619 |
# Configure event handlers
|
620 |
+
msg_event = msg.submit(
|
621 |
+
self.rag_memory_stream,
|
622 |
inputs=[msg, chatbot],
|
623 |
outputs=[chatbot, msg]
|
624 |
)
|
625 |
+
send_event = send_btn.click(
|
626 |
+
self.rag_memory_stream,
|
627 |
inputs=[msg, chatbot],
|
628 |
outputs=[chatbot, msg]
|
629 |
)
|
630 |
|
631 |
+
# Clear textbox after sending
|
632 |
+
msg_event.then(lambda: "", None, msg)
|
633 |
+
send_event.then(lambda: "", None, msg)
|
634 |
+
|
635 |
# Footer with version info
|
636 |
gr.Markdown("Ijwi ry'Ubufasha Chatbot v1.0.0 © 2025")
|
637 |
|
|
|
652 |
body, .gradio-container {
|
653 |
margin: 0;
|
654 |
padding: 0;
|
655 |
+
width: 100%;
|
656 |
height: 100vh;
|
657 |
display: flex;
|
658 |
flex-direction: column;
|
|
|
710 |
|
711 |
return demo
|
712 |
|
713 |
+
|
714 |
+
# Fallback retriever class for when vectorstore is not available
|
715 |
+
class FallbackRetriever:
|
716 |
+
def invoke(self, query):
|
717 |
+
# Return a list of document-like objects with empty content
|
718 |
+
return [Document(page_content="No specific information available on this topic.", metadata={})]
|
719 |
+
|
720 |
+
|
721 |
# Main execution function
|
722 |
def main():
|
723 |
# Initialize the chatbot
|
724 |
chatbot = GBVSupportChatbot()
|
725 |
|
726 |
+
try:
|
727 |
+
# Load data
|
728 |
+
chatbot.load_data()
|
729 |
+
|
730 |
+
# Create and launch the interface
|
731 |
+
demo = chatbot.create_chatbot_interface()
|
732 |
+
demo.launch(share=True)
|
733 |
+
except Exception as e:
|
734 |
+
print(f"Error in main execution: {e}")
|
735 |
+
|
736 |
|
737 |
if __name__ == "__main__":
|
738 |
main()
|