OpenMAP-T1 / src /parcellation.py
西牧慧
update: parcellation
dcbe128
import os
import random
import shutil
import string
import zipfile
from functools import partial
import gradio as gr
import matplotlib.pyplot as plt
import nibabel as nib
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm as std_tqdm
tqdm = partial(std_tqdm, dynamic_ncols=True)
# Import required modules from our project
from utils.cropping import cropping
from utils.hemisphere import hemisphere
from utils.load_model import load_model
from utils.make_csv import make_csv
from utils.make_level import create_parcellated_images
from utils.parcellation import parcellation
from utils.postprocessing import postprocessing
from utils.preprocessing import preprocessing
from utils.stripping import stripping
def nii_to_image(voxel_path, label_path, output_dir, basename):
"""
Converts two NIfTI files into 2D images for visualization.
The voxel (input MRI) is shown as a grayscale image and the label (segmentation)
is shown using a default color map.
A middle slice is chosen by default.
"""
# Load the NIfTI volumes and squeeze to remove extra dimensions
vdata = nib.squeeze_image(nib.as_closest_canonical(nib.load(voxel_path)))
ldata = nib.squeeze_image(nib.as_closest_canonical(nib.load(label_path)))
voxel = vdata.get_fdata().astype("float32")
label = ldata.get_fdata().astype("int16")
# Choose the middle slice along the first dimension and rotate for display
slice_index = voxel.shape[0] // 2
slice_voxel = np.rot90(voxel[slice_index, :, :])
slice_label = np.rot90(label[slice_index, :, :])
# Plot and save the input MRI image
plt.figure(figsize=(5, 5))
plt.imshow(slice_voxel, cmap="gray")
plt.title("Input Image")
plt.axis("off")
input_png_path = os.path.join(os.path.dirname(output_dir), f"{basename}_input.png")
plt.savefig(input_png_path, format="png", bbox_inches="tight", pad_inches=0)
# Plot and save the parcellation (segmentation) map image
plt.figure(figsize=(5, 5))
plt.imshow(slice_label)
plt.title("Parcellation Result")
plt.axis("off")
parcellation_png_path = os.path.join(
os.path.dirname(output_dir), f"{basename}_parcellation.png"
)
plt.savefig(parcellation_png_path, format="png", bbox_inches="tight", pad_inches=0)
return input_png_path, parcellation_png_path
def run_inference(input_file, only_face_cropping, only_skull_stripping):
# Generate a random 10-character string to create a unique temporary directory
random_string = "".join(random.choices(string.ascii_letters + string.digits, k=10))
# Extract the base filename from the uploaded file (handle .nii and .nii.gz)
basename = os.path.splitext(os.path.basename(input_file.name))[0]
if basename.endswith(".nii"):
basename = os.path.splitext(basename)[0]
# Create an Options object (similar to argparse.Namespace)
class Options:
pass
opt = Options()
# Set the output directory uniquely with the random string and base filename
opt.o = f"output/{random_string}/{basename}"
opt.only_face_cropping = only_face_cropping
opt.only_skull_stripping = only_skull_stripping
# Device selection: prefer CUDA if available, otherwise MPS or CPU
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
print(f"Using device: {device}")
# Load the pre-trained models from the fixed "model/" folder
# cnet, ssnet, pnet_c, pnet_s, pnet_a, hnet_c, hnet_a = load_model("model/", device=device)
cnet, ssnet, pnet_a, hnet_c, hnet_a = load_model("model/", device=device)
# --- Processing Flow (based on the original parcellation.py) ---
# 1. Load the input image, convert to canonical orientation, and remove extra dimensions
odata = nib.squeeze_image(nib.as_closest_canonical(nib.load(input_file.name)))
nii = nib.Nifti1Image(odata.get_fdata().astype(np.float32), affine=odata.affine)
os.makedirs(os.path.join(opt.o, "original"), exist_ok=True)
original_nii_path = os.path.join(opt.o, f"original/{basename}.nii")
nib.save(nii, original_nii_path)
# 2. Preprocess the image
odata, data = preprocessing(input_file.name, opt.o, basename)
# 3. Cropping
cropped, out_filename = cropping(opt.o, basename, odata, data, cnet, device)
if only_face_cropping:
pass
else:
# 4. Skull stripping
stripped, shift, out_filename = stripping(
opt.o, basename, cropped, odata, data, ssnet, device
)
if only_skull_stripping:
pass
else:
# 5. Parcellation
parcellated = parcellation(stripped, pnet_a, pnet_a, pnet_a, device)
# 6. Separate into hemispheres
separated = hemisphere(stripped, hnet_c, hnet_a, device)
# 7. Postprocessing
output = postprocessing(parcellated, separated, shift, device)
# 8. Create CSV with volume information, etc.
df = make_csv(output, opt.o, basename)
# 9. Create and save the parcellation result NIfTI file
nii_out = nib.Nifti1Image(output.astype(np.uint16), affine=data.affine)
header = odata.header
nii_out = nib.processing.conform(
nii_out,
out_shape=(header["dim"][1], header["dim"][2], header["dim"][3]),
voxel_size=(header["pixdim"][1], header["pixdim"][2], header["pixdim"][3]),
order=0,
)
out_parcellated_dir = os.path.join(opt.o, "parcellated")
os.makedirs(out_parcellated_dir, exist_ok=True)
out_filename = os.path.join(out_parcellated_dir, f"{basename}_Type1_Level5.nii")
nib.save(nii_out, out_filename)
create_parcellated_images(output, opt.o, basename, odata, data)
# Zip the entire output directory into a ZIP file
zip_path = os.path.join(os.path.dirname(opt.o), f"{basename}_results.zip")
with zipfile.ZipFile(zip_path, "w") as zipf:
for root, _, files in os.walk(opt.o):
for file in files:
file_path = os.path.join(root, file)
# Adjust the path within the zip archive
arcname = os.path.relpath(file_path, start=opt.o)
zipf.write(file_path, arcname)
# Convert the NIfTI files into visualization images (PNG)
input_png_path, parcellation_png_path = nii_to_image(
input_file.name, out_filename, opt.o, basename
)
# *** Cleanup: Remove the temporary output directory ***
# Note: This is performed before returning. It is not possible to execute code after the return statement.
shutil.rmtree(opt.o)
# Return the ZIP file path and the two visualization images
return zip_path, Image.open(input_png_path), Image.open(parcellation_png_path)
# Create the Gradio interface (the model folder input is not needed)
iface = gr.Interface(
fn=run_inference,
inputs=[
gr.File(label="Input NIfTI File (.nii or .nii.gz)"),
gr.Checkbox(label="Only Face Cropping", value=False),
gr.Checkbox(label="Only Skull Stripping", value=False),
],
outputs=[
gr.File(label="Output Results ZIP File"),
gr.Image(label="MRI Image (Original)"),
gr.Image(label="Parcellation Map (Type1_Level5)"),
],
title="OpenMAP-T1 Inference",
description=(
"The uploaded MRI image will be processed using OpenMAP-T1, and the parcellation "
"results will be returned as a ZIP file along with visualization images."
),
)
if __name__ == "__main__":
iface.launch()