import os import random import shutil import string import zipfile from functools import partial import gradio as gr import matplotlib.pyplot as plt import nibabel as nib import numpy as np import torch from PIL import Image from tqdm import tqdm as std_tqdm tqdm = partial(std_tqdm, dynamic_ncols=True) # Import required modules from our project from utils.cropping import cropping from utils.hemisphere import hemisphere from utils.load_model import load_model from utils.make_csv import make_csv from utils.make_level import create_parcellated_images from utils.parcellation import parcellation from utils.postprocessing import postprocessing from utils.preprocessing import preprocessing from utils.stripping import stripping def nii_to_image(voxel_path, label_path, output_dir, basename): """ Converts two NIfTI files into 2D images for visualization. The voxel (input MRI) is shown as a grayscale image and the label (segmentation) is shown using a default color map. A middle slice is chosen by default. """ # Load the NIfTI volumes and squeeze to remove extra dimensions vdata = nib.squeeze_image(nib.as_closest_canonical(nib.load(voxel_path))) ldata = nib.squeeze_image(nib.as_closest_canonical(nib.load(label_path))) voxel = vdata.get_fdata().astype("float32") label = ldata.get_fdata().astype("int16") # Choose the middle slice along the first dimension and rotate for display slice_index = voxel.shape[0] // 2 slice_voxel = np.rot90(voxel[slice_index, :, :]) slice_label = np.rot90(label[slice_index, :, :]) # Plot and save the input MRI image plt.figure(figsize=(5, 5)) plt.imshow(slice_voxel, cmap="gray") plt.title("Input Image") plt.axis("off") input_png_path = os.path.join(os.path.dirname(output_dir), f"{basename}_input.png") plt.savefig(input_png_path, format="png", bbox_inches="tight", pad_inches=0) # Plot and save the parcellation (segmentation) map image plt.figure(figsize=(5, 5)) plt.imshow(slice_label) plt.title("Parcellation Result") plt.axis("off") parcellation_png_path = os.path.join( os.path.dirname(output_dir), f"{basename}_parcellation.png" ) plt.savefig(parcellation_png_path, format="png", bbox_inches="tight", pad_inches=0) return input_png_path, parcellation_png_path def run_inference(input_file, only_face_cropping, only_skull_stripping): # Generate a random 10-character string to create a unique temporary directory random_string = "".join(random.choices(string.ascii_letters + string.digits, k=10)) # Extract the base filename from the uploaded file (handle .nii and .nii.gz) basename = os.path.splitext(os.path.basename(input_file.name))[0] if basename.endswith(".nii"): basename = os.path.splitext(basename)[0] # Create an Options object (similar to argparse.Namespace) class Options: pass opt = Options() # Set the output directory uniquely with the random string and base filename opt.o = f"output/{random_string}/{basename}" opt.only_face_cropping = only_face_cropping opt.only_skull_stripping = only_skull_stripping # Device selection: prefer CUDA if available, otherwise MPS or CPU if torch.cuda.is_available(): device = torch.device("cuda") elif torch.backends.mps.is_available(): device = torch.device("mps") else: device = torch.device("cpu") print(f"Using device: {device}") # Load the pre-trained models from the fixed "model/" folder # cnet, ssnet, pnet_c, pnet_s, pnet_a, hnet_c, hnet_a = load_model("model/", device=device) cnet, ssnet, pnet_a, hnet_c, hnet_a = load_model("model/", device=device) # --- Processing Flow (based on the original parcellation.py) --- # 1. Load the input image, convert to canonical orientation, and remove extra dimensions odata = nib.squeeze_image(nib.as_closest_canonical(nib.load(input_file.name))) nii = nib.Nifti1Image(odata.get_fdata().astype(np.float32), affine=odata.affine) os.makedirs(os.path.join(opt.o, "original"), exist_ok=True) original_nii_path = os.path.join(opt.o, f"original/{basename}.nii") nib.save(nii, original_nii_path) # 2. Preprocess the image odata, data = preprocessing(input_file.name, opt.o, basename) # 3. Cropping cropped, out_filename = cropping(opt.o, basename, odata, data, cnet, device) if only_face_cropping: pass else: # 4. Skull stripping stripped, shift, out_filename = stripping( opt.o, basename, cropped, odata, data, ssnet, device ) if only_skull_stripping: pass else: # 5. Parcellation parcellated = parcellation(stripped, pnet_a, pnet_a, pnet_a, device) # 6. Separate into hemispheres separated = hemisphere(stripped, hnet_c, hnet_a, device) # 7. Postprocessing output = postprocessing(parcellated, separated, shift, device) # 8. Create CSV with volume information, etc. df = make_csv(output, opt.o, basename) # 9. Create and save the parcellation result NIfTI file nii_out = nib.Nifti1Image(output.astype(np.uint16), affine=data.affine) header = odata.header nii_out = nib.processing.conform( nii_out, out_shape=(header["dim"][1], header["dim"][2], header["dim"][3]), voxel_size=(header["pixdim"][1], header["pixdim"][2], header["pixdim"][3]), order=0, ) out_parcellated_dir = os.path.join(opt.o, "parcellated") os.makedirs(out_parcellated_dir, exist_ok=True) out_filename = os.path.join(out_parcellated_dir, f"{basename}_Type1_Level5.nii") nib.save(nii_out, out_filename) create_parcellated_images(output, opt.o, basename, odata, data) # Zip the entire output directory into a ZIP file zip_path = os.path.join(os.path.dirname(opt.o), f"{basename}_results.zip") with zipfile.ZipFile(zip_path, "w") as zipf: for root, _, files in os.walk(opt.o): for file in files: file_path = os.path.join(root, file) # Adjust the path within the zip archive arcname = os.path.relpath(file_path, start=opt.o) zipf.write(file_path, arcname) # Convert the NIfTI files into visualization images (PNG) input_png_path, parcellation_png_path = nii_to_image( input_file.name, out_filename, opt.o, basename ) # *** Cleanup: Remove the temporary output directory *** # Note: This is performed before returning. It is not possible to execute code after the return statement. shutil.rmtree(opt.o) # Return the ZIP file path and the two visualization images return zip_path, Image.open(input_png_path), Image.open(parcellation_png_path) # Create the Gradio interface (the model folder input is not needed) iface = gr.Interface( fn=run_inference, inputs=[ gr.File(label="Input NIfTI File (.nii or .nii.gz)"), gr.Checkbox(label="Only Face Cropping", value=False), gr.Checkbox(label="Only Skull Stripping", value=False), ], outputs=[ gr.File(label="Output Results ZIP File"), gr.Image(label="MRI Image (Original)"), gr.Image(label="Parcellation Map (Type1_Level5)"), ], title="OpenMAP-T1 Inference", description=( "The uploaded MRI image will be processed using OpenMAP-T1, and the parcellation " "results will be returned as a ZIP file along with visualization images." ), ) if __name__ == "__main__": iface.launch()