Spaces:
Sleeping
Sleeping
File size: 7,742 Bytes
01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf dcbe128 01f75cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import random
import shutil
import string
import zipfile
from functools import partial
import gradio as gr
import matplotlib.pyplot as plt
import nibabel as nib
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm as std_tqdm
tqdm = partial(std_tqdm, dynamic_ncols=True)
# Import required modules from our project
from utils.cropping import cropping
from utils.hemisphere import hemisphere
from utils.load_model import load_model
from utils.make_csv import make_csv
from utils.make_level import create_parcellated_images
from utils.parcellation import parcellation
from utils.postprocessing import postprocessing
from utils.preprocessing import preprocessing
from utils.stripping import stripping
def nii_to_image(voxel_path, label_path, output_dir, basename):
"""
Converts two NIfTI files into 2D images for visualization.
The voxel (input MRI) is shown as a grayscale image and the label (segmentation)
is shown using a default color map.
A middle slice is chosen by default.
"""
# Load the NIfTI volumes and squeeze to remove extra dimensions
vdata = nib.squeeze_image(nib.as_closest_canonical(nib.load(voxel_path)))
ldata = nib.squeeze_image(nib.as_closest_canonical(nib.load(label_path)))
voxel = vdata.get_fdata().astype("float32")
label = ldata.get_fdata().astype("int16")
# Choose the middle slice along the first dimension and rotate for display
slice_index = voxel.shape[0] // 2
slice_voxel = np.rot90(voxel[slice_index, :, :])
slice_label = np.rot90(label[slice_index, :, :])
# Plot and save the input MRI image
plt.figure(figsize=(5, 5))
plt.imshow(slice_voxel, cmap="gray")
plt.title("Input Image")
plt.axis("off")
input_png_path = os.path.join(os.path.dirname(output_dir), f"{basename}_input.png")
plt.savefig(input_png_path, format="png", bbox_inches="tight", pad_inches=0)
# Plot and save the parcellation (segmentation) map image
plt.figure(figsize=(5, 5))
plt.imshow(slice_label)
plt.title("Parcellation Result")
plt.axis("off")
parcellation_png_path = os.path.join(
os.path.dirname(output_dir), f"{basename}_parcellation.png"
)
plt.savefig(parcellation_png_path, format="png", bbox_inches="tight", pad_inches=0)
return input_png_path, parcellation_png_path
def run_inference(input_file, only_face_cropping, only_skull_stripping):
# Generate a random 10-character string to create a unique temporary directory
random_string = "".join(random.choices(string.ascii_letters + string.digits, k=10))
# Extract the base filename from the uploaded file (handle .nii and .nii.gz)
basename = os.path.splitext(os.path.basename(input_file.name))[0]
if basename.endswith(".nii"):
basename = os.path.splitext(basename)[0]
# Create an Options object (similar to argparse.Namespace)
class Options:
pass
opt = Options()
# Set the output directory uniquely with the random string and base filename
opt.o = f"output/{random_string}/{basename}"
opt.only_face_cropping = only_face_cropping
opt.only_skull_stripping = only_skull_stripping
# Device selection: prefer CUDA if available, otherwise MPS or CPU
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
print(f"Using device: {device}")
# Load the pre-trained models from the fixed "model/" folder
# cnet, ssnet, pnet_c, pnet_s, pnet_a, hnet_c, hnet_a = load_model("model/", device=device)
cnet, ssnet, pnet_a, hnet_c, hnet_a = load_model("model/", device=device)
# --- Processing Flow (based on the original parcellation.py) ---
# 1. Load the input image, convert to canonical orientation, and remove extra dimensions
odata = nib.squeeze_image(nib.as_closest_canonical(nib.load(input_file.name)))
nii = nib.Nifti1Image(odata.get_fdata().astype(np.float32), affine=odata.affine)
os.makedirs(os.path.join(opt.o, "original"), exist_ok=True)
original_nii_path = os.path.join(opt.o, f"original/{basename}.nii")
nib.save(nii, original_nii_path)
# 2. Preprocess the image
odata, data = preprocessing(input_file.name, opt.o, basename)
# 3. Cropping
cropped, out_filename = cropping(opt.o, basename, odata, data, cnet, device)
if only_face_cropping:
pass
else:
# 4. Skull stripping
stripped, shift, out_filename = stripping(
opt.o, basename, cropped, odata, data, ssnet, device
)
if only_skull_stripping:
pass
else:
# 5. Parcellation
parcellated = parcellation(stripped, pnet_a, pnet_a, pnet_a, device)
# 6. Separate into hemispheres
separated = hemisphere(stripped, hnet_c, hnet_a, device)
# 7. Postprocessing
output = postprocessing(parcellated, separated, shift, device)
# 8. Create CSV with volume information, etc.
df = make_csv(output, opt.o, basename)
# 9. Create and save the parcellation result NIfTI file
nii_out = nib.Nifti1Image(output.astype(np.uint16), affine=data.affine)
header = odata.header
nii_out = nib.processing.conform(
nii_out,
out_shape=(header["dim"][1], header["dim"][2], header["dim"][3]),
voxel_size=(header["pixdim"][1], header["pixdim"][2], header["pixdim"][3]),
order=0,
)
out_parcellated_dir = os.path.join(opt.o, "parcellated")
os.makedirs(out_parcellated_dir, exist_ok=True)
out_filename = os.path.join(out_parcellated_dir, f"{basename}_Type1_Level5.nii")
nib.save(nii_out, out_filename)
create_parcellated_images(output, opt.o, basename, odata, data)
# Zip the entire output directory into a ZIP file
zip_path = os.path.join(os.path.dirname(opt.o), f"{basename}_results.zip")
with zipfile.ZipFile(zip_path, "w") as zipf:
for root, _, files in os.walk(opt.o):
for file in files:
file_path = os.path.join(root, file)
# Adjust the path within the zip archive
arcname = os.path.relpath(file_path, start=opt.o)
zipf.write(file_path, arcname)
# Convert the NIfTI files into visualization images (PNG)
input_png_path, parcellation_png_path = nii_to_image(
input_file.name, out_filename, opt.o, basename
)
# *** Cleanup: Remove the temporary output directory ***
# Note: This is performed before returning. It is not possible to execute code after the return statement.
shutil.rmtree(opt.o)
# Return the ZIP file path and the two visualization images
return zip_path, Image.open(input_png_path), Image.open(parcellation_png_path)
# Create the Gradio interface (the model folder input is not needed)
iface = gr.Interface(
fn=run_inference,
inputs=[
gr.File(label="Input NIfTI File (.nii or .nii.gz)"),
gr.Checkbox(label="Only Face Cropping", value=False),
gr.Checkbox(label="Only Skull Stripping", value=False),
],
outputs=[
gr.File(label="Output Results ZIP File"),
gr.Image(label="MRI Image (Original)"),
gr.Image(label="Parcellation Map (Type1_Level5)"),
],
title="OpenMAP-T1 Inference",
description=(
"The uploaded MRI image will be processed using OpenMAP-T1, and the parcellation "
"results will be returned as a ZIP file along with visualization images."
),
)
if __name__ == "__main__":
iface.launch()
|