File size: 7,742 Bytes
01f75cf
dcbe128
 
 
 
01f75cf
 
 
dcbe128
01f75cf
 
 
dcbe128
01f75cf
 
 
 
dcbe128
01f75cf
 
 
 
 
 
 
 
 
 
 
dcbe128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f75cf
dcbe128
01f75cf
 
 
dcbe128
 
01f75cf
dcbe128
01f75cf
dcbe128
 
01f75cf
dcbe128
01f75cf
 
 
 
dcbe128
 
01f75cf
 
 
dcbe128
01f75cf
 
 
 
 
 
 
 
dcbe128
 
 
 
 
 
 
01f75cf
dcbe128
 
 
01f75cf
dcbe128
 
01f75cf
dcbe128
 
01f75cf
dcbe128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f75cf
 
dcbe128
 
 
01f75cf
dcbe128
 
01f75cf
 
dcbe128
01f75cf
 
 
dcbe128
01f75cf
 
 
dcbe128
 
 
 
 
01f75cf
dcbe128
 
 
 
01f75cf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import random
import shutil
import string
import zipfile
from functools import partial

import gradio as gr
import matplotlib.pyplot as plt
import nibabel as nib
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm as std_tqdm

tqdm = partial(std_tqdm, dynamic_ncols=True)

# Import required modules from our project
from utils.cropping import cropping
from utils.hemisphere import hemisphere
from utils.load_model import load_model
from utils.make_csv import make_csv
from utils.make_level import create_parcellated_images
from utils.parcellation import parcellation
from utils.postprocessing import postprocessing
from utils.preprocessing import preprocessing
from utils.stripping import stripping


def nii_to_image(voxel_path, label_path, output_dir, basename):
    """
    Converts two NIfTI files into 2D images for visualization.
    The voxel (input MRI) is shown as a grayscale image and the label (segmentation)
    is shown using a default color map.
    A middle slice is chosen by default.
    """
    # Load the NIfTI volumes and squeeze to remove extra dimensions
    vdata = nib.squeeze_image(nib.as_closest_canonical(nib.load(voxel_path)))
    ldata = nib.squeeze_image(nib.as_closest_canonical(nib.load(label_path)))
    voxel = vdata.get_fdata().astype("float32")
    label = ldata.get_fdata().astype("int16")

    # Choose the middle slice along the first dimension and rotate for display
    slice_index = voxel.shape[0] // 2
    slice_voxel = np.rot90(voxel[slice_index, :, :])
    slice_label = np.rot90(label[slice_index, :, :])

    # Plot and save the input MRI image
    plt.figure(figsize=(5, 5))
    plt.imshow(slice_voxel, cmap="gray")
    plt.title("Input Image")
    plt.axis("off")
    input_png_path = os.path.join(os.path.dirname(output_dir), f"{basename}_input.png")
    plt.savefig(input_png_path, format="png", bbox_inches="tight", pad_inches=0)

    # Plot and save the parcellation (segmentation) map image
    plt.figure(figsize=(5, 5))
    plt.imshow(slice_label)
    plt.title("Parcellation Result")
    plt.axis("off")
    parcellation_png_path = os.path.join(
        os.path.dirname(output_dir), f"{basename}_parcellation.png"
    )
    plt.savefig(parcellation_png_path, format="png", bbox_inches="tight", pad_inches=0)

    return input_png_path, parcellation_png_path


def run_inference(input_file, only_face_cropping, only_skull_stripping):
    # Generate a random 10-character string to create a unique temporary directory
    random_string = "".join(random.choices(string.ascii_letters + string.digits, k=10))

    # Extract the base filename from the uploaded file (handle .nii and .nii.gz)
    basename = os.path.splitext(os.path.basename(input_file.name))[0]
    if basename.endswith(".nii"):
        basename = os.path.splitext(basename)[0]

    # Create an Options object (similar to argparse.Namespace)
    class Options:
        pass

    opt = Options()
    # Set the output directory uniquely with the random string and base filename
    opt.o = f"output/{random_string}/{basename}"
    opt.only_face_cropping = only_face_cropping
    opt.only_skull_stripping = only_skull_stripping

    # Device selection: prefer CUDA if available, otherwise MPS or CPU
    if torch.cuda.is_available():
        device = torch.device("cuda")
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")
    print(f"Using device: {device}")

    # Load the pre-trained models from the fixed "model/" folder
    # cnet, ssnet, pnet_c, pnet_s, pnet_a, hnet_c, hnet_a = load_model("model/", device=device)
    cnet, ssnet, pnet_a, hnet_c, hnet_a = load_model("model/", device=device)

    # --- Processing Flow (based on the original parcellation.py) ---
    # 1. Load the input image, convert to canonical orientation, and remove extra dimensions
    odata = nib.squeeze_image(nib.as_closest_canonical(nib.load(input_file.name)))
    nii = nib.Nifti1Image(odata.get_fdata().astype(np.float32), affine=odata.affine)
    os.makedirs(os.path.join(opt.o, "original"), exist_ok=True)
    original_nii_path = os.path.join(opt.o, f"original/{basename}.nii")
    nib.save(nii, original_nii_path)

    # 2. Preprocess the image
    odata, data = preprocessing(input_file.name, opt.o, basename)

    # 3. Cropping
    cropped, out_filename = cropping(opt.o, basename, odata, data, cnet, device)
    if only_face_cropping:
        pass

    else:
        # 4. Skull stripping
        stripped, shift, out_filename = stripping(
            opt.o, basename, cropped, odata, data, ssnet, device
        )
        if only_skull_stripping:
            pass
        else:
            # 5. Parcellation
            parcellated = parcellation(stripped, pnet_a, pnet_a, pnet_a, device)
            # 6. Separate into hemispheres
            separated = hemisphere(stripped, hnet_c, hnet_a, device)
            # 7. Postprocessing
            output = postprocessing(parcellated, separated, shift, device)
            # 8. Create CSV with volume information, etc.
            df = make_csv(output, opt.o, basename)
            # 9. Create and save the parcellation result NIfTI file
            nii_out = nib.Nifti1Image(output.astype(np.uint16), affine=data.affine)
            header = odata.header
            nii_out = nib.processing.conform(
                nii_out,
                out_shape=(header["dim"][1], header["dim"][2], header["dim"][3]),
                voxel_size=(header["pixdim"][1], header["pixdim"][2], header["pixdim"][3]),
                order=0,
            )
            out_parcellated_dir = os.path.join(opt.o, "parcellated")
            os.makedirs(out_parcellated_dir, exist_ok=True)
            out_filename = os.path.join(out_parcellated_dir, f"{basename}_Type1_Level5.nii")
            nib.save(nii_out, out_filename)
            create_parcellated_images(output, opt.o, basename, odata, data)

    # Zip the entire output directory into a ZIP file
    zip_path = os.path.join(os.path.dirname(opt.o), f"{basename}_results.zip")
    with zipfile.ZipFile(zip_path, "w") as zipf:
        for root, _, files in os.walk(opt.o):
            for file in files:
                file_path = os.path.join(root, file)
                # Adjust the path within the zip archive
                arcname = os.path.relpath(file_path, start=opt.o)
                zipf.write(file_path, arcname)

    # Convert the NIfTI files into visualization images (PNG)
    input_png_path, parcellation_png_path = nii_to_image(
        input_file.name, out_filename, opt.o, basename
    )

    # *** Cleanup: Remove the temporary output directory ***
    # Note: This is performed before returning. It is not possible to execute code after the return statement.
    shutil.rmtree(opt.o)

    # Return the ZIP file path and the two visualization images
    return zip_path, Image.open(input_png_path), Image.open(parcellation_png_path)


# Create the Gradio interface (the model folder input is not needed)
iface = gr.Interface(
    fn=run_inference,
    inputs=[
        gr.File(label="Input NIfTI File (.nii or .nii.gz)"),
        gr.Checkbox(label="Only Face Cropping", value=False),
        gr.Checkbox(label="Only Skull Stripping", value=False),
    ],
    outputs=[
        gr.File(label="Output Results ZIP File"),
        gr.Image(label="MRI Image (Original)"),
        gr.Image(label="Parcellation Map (Type1_Level5)"),
    ],
    title="OpenMAP-T1 Inference",
    description=(
        "The uploaded MRI image will be processed using OpenMAP-T1, and the parcellation "
        "results will be returned as a ZIP file along with visualization images."
    ),
)

if __name__ == "__main__":
    iface.launch()