Mountchicken's picture
Update app.py
fdd30f6 verified
import spaces
import argparse
import json
import os
os.system("pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124")
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import sys
import threading
# Add pre-build setup for Hugging Face Spaces
def setup_environment():
"""Setup environment for Hugging Face Spaces"""
if os.environ.get("SPACE_ID"): # Running on HF Spaces
print("Detected Hugging Face Spaces environment")
# Run pre-build setup
try:
import subprocess
subprocess.run([sys.executable, "pre_build.py"], check=True)
except subprocess.CalledProcessError as e:
print(f"Pre-build setup failed: {e}")
# Continue anyway, maybe files are already set up
# Run setup
setup_environment()
os.system("pip install -r requirements_hf.txt")
import gradio as gr
import numpy as np
import torch
from groundingdino.util.inference import load_model
from PIL import Image
from qwen_vl_utils import process_vision_info
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer,
)
from tools.inference_tools import (
convert_boxes_from_absolute_to_qwen25_format,
inference_gdino,
postprocess_and_vis_inference_out,
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path", type=str, default="IDEA-Research/Rex-Thinker-GRPO-7B"
)
parser.add_argument(
"--gdino_config",
type=str,
default="groundingdino/config/GroundingDINO_SwinT_OGC.py",
)
parser.add_argument(
"--gdino_weights",
type=str,
default="weights/groundingdino_swint_ogc.pth",
)
return parser.parse_args()
def initialize_models(args):
# Load GDINO model
gdino_model = load_model(args.gdino_config, args.gdino_weights).to("cuda")
gdino_model.eval()
# Load Rex-Thinker-GRPO
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
args.model_path,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
processor = AutoProcessor.from_pretrained(
args.model_path, min_pixels=16 * 28 * 28, max_pixels=1280 * 28 * 28
)
return (gdino_model, processor, model)
@spaces.GPU
def process_image_with_streaming(
image,
system_prompt,
cate_name,
referring_expression,
draw_width,
font_size,
gdino_model,
rexthinker_processor,
rexthinker_model,
):
"""
Process image with streaming-like updates using a regular function.
"""
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Run GDINO inference
gdino_boxes = inference_gdino(
image,
[cate_name],
gdino_model,
TEXT_TRESHOLD=0.25,
BOX_TRESHOLD=0.25,
)
proposed_box = convert_boxes_from_absolute_to_qwen25_format(
gdino_boxes, image.width, image.height
)
hint = json.dumps(
{
f"{cate_name}": proposed_box,
}
)
question = f"Hint: Object and its coordinates in this image: {hint}\nPlease detect {referring_expression} in the image."
# compose input
print(f"system_prompt: {system_prompt}")
print(f"question: {question}")
messages = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": question},
],
},
]
text = rexthinker_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = rexthinker_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
input_height = inputs["image_grid_thw"][0][1] * 14
input_width = inputs["image_grid_thw"][0][2] * 14
# Create placeholder visualization with GDINO results
placeholder_gdino_vis = image.copy()
try:
import numpy as np
from tools.inference_tools import visualize
placeholder_gdino_vis = visualize(
placeholder_gdino_vis,
gdino_boxes,
np.ones(len(gdino_boxes)),
font_size=font_size,
draw_width=draw_width,
)
except:
pass
# For now, let's use the standard generation approach
# We can implement true streaming later with a more complex setup
generated_ids = rexthinker_model.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = rexthinker_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
output_text = output_text[0]
# Now do post-processing with the complete text
ref_vis_result, gdino_vis_result = postprocess_and_vis_inference_out(
image,
output_text,
proposed_box,
gdino_boxes,
font_size=font_size,
draw_width=draw_width,
input_height=input_height,
input_width=input_width,
)
return gdino_vis_result, ref_vis_result, output_text
def process_image_non_streaming(
image,
system_prompt,
cate_name,
referring_expression,
draw_width,
font_size,
gdino_model,
rexthinker_processor,
rexthinker_model,
):
"""Non-streaming version for examples"""
# Use the regular processing function
return process_image_with_streaming(
image,
system_prompt,
cate_name,
referring_expression,
draw_width,
font_size,
gdino_model,
rexthinker_processor,
rexthinker_model,
)
def create_streaming_interface(models):
"""Create a streaming interface using a different approach"""
(
gdino_model,
rexthinker_processor,
rexthinker_model,
) = models
@spaces.GPU
def process_with_streaming(
image,
system_prompt,
cate_name,
referring_expression,
draw_width,
font_size,
):
# Run GDINO inference
gdino_boxes = inference_gdino(
image,
[cate_name],
gdino_model,
TEXT_TRESHOLD=0.25,
BOX_TRESHOLD=0.25,
)
proposed_box = convert_boxes_from_absolute_to_qwen25_format(
gdino_boxes, image.width, image.height
)
hint = json.dumps(
{
f"{cate_name}": proposed_box,
}
)
question = f"Hint: Object and its coordinates in this image: {hint}\nPlease detect {referring_expression} in the image."
# compose input
messages = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": question},
],
},
]
text = rexthinker_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = rexthinker_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
input_height = inputs["image_grid_thw"][0][1] * 14
input_width = inputs["image_grid_thw"][0][2] * 14
# Create GDINO visualization
gdino_vis = image.copy()
try:
import numpy as np
from tools.inference_tools import visualize
gdino_vis = visualize(
gdino_vis,
gdino_boxes,
np.ones(len(gdino_boxes)),
font_size=font_size,
draw_width=draw_width,
)
except:
pass
# Yield initial state with GDINO visualization
yield gdino_vis, None, "Starting generation..."
# Use streaming generation
streamer = TextIteratorStreamer(
rexthinker_processor.tokenizer,
timeout=60,
skip_prompt=True,
skip_special_tokens=True,
)
generation_kwargs = {
**inputs,
"max_new_tokens": 4096,
"streamer": streamer,
"do_sample": False,
}
# Start generation in a separate thread
thread = threading.Thread(
target=rexthinker_model.generate, kwargs=generation_kwargs
)
thread.start()
# Stream text with reduced frequency to minimize flickering
streaming_text = ""
token_count = 0
for new_text in streamer:
streaming_text += new_text
token_count += 1
# Update every 5 tokens to reduce flickering further
if token_count % 5 == 0:
yield gdino_vis, None, streaming_text
# Ensure final text is shown
yield gdino_vis, None, streaming_text
thread.join()
# Now do post-processing with the complete text
ref_vis_result, gdino_vis_result = postprocess_and_vis_inference_out(
image,
streaming_text,
proposed_box,
gdino_boxes,
font_size=font_size,
draw_width=draw_width,
input_height=input_height,
input_width=input_width,
)
# Final yield with complete visualizations
yield gdino_vis_result, ref_vis_result, streaming_text
return process_with_streaming
def create_demo(models):
(
gdino_model,
rexthinker_processor,
rexthinker_model,
) = models
# Get the streaming function
process_with_streaming = create_streaming_interface(models)
with gr.Blocks() as demo:
gr.Markdown("""
# Rex-Thinker Demo
- Homepage: https://rexthinker.github.io/
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
gdino_prompt = gr.Textbox(
label="Object Category Name to get Candidate boxes",
placeholder="person",
value="person",
)
referring_prompt = gr.Textbox(
label="Referring Expression",
placeholder="person wearning red shirt and a black hat",
value="person wearning red shirt and a black hat",
)
system_prompt = gr.Textbox(
label="System Prompt",
value="A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
)
with gr.Row():
draw_width = gr.Slider(
minimum=5.0,
maximum=100.0,
value=10.0,
step=1,
label="Draw Width for Visualization",
)
font_size = gr.Slider(
minimum=5.0,
maximum=100.0,
value=20.0,
step=1,
label="Font size for Visualization",
)
run_button = gr.Button("Run with Streaming", variant="primary")
with gr.Column():
gdino_output = gr.Image(label="GroundingDINO Detection")
final_output = gr.Image(label="Rex-Thinker Visualization")
with gr.Column():
llm_output = gr.Textbox(
label="LLM Raw Output", interactive=False, lines=50, max_lines=100
)
# Add examples section
gr.Markdown("## Examples")
examples = gr.Examples(
examples=[
[
"example_images/demo_tomato.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"tomato",
"ripe tomato",
10,
20,
],
[
"example_images/demo_helmet.png",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"helmet",
"the forth helmet from left",
10,
20,
],
[
"example_images/demo_person.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"person",
"person in the red car but not driving",
10,
20,
],
[
"example_images/demo_letter.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"person",
"person wearing cloth that has two letters",
10,
20,
],
[
"example_images/demo_dog.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"dog",
"the dog sleep on the bed with a pot under its body",
10,
20,
],
],
inputs=[
input_image,
system_prompt,
gdino_prompt,
referring_prompt,
draw_width,
font_size,
],
outputs=[gdino_output, final_output, llm_output],
fn=lambda img, sys, p1, p2, d, f: process_image_non_streaming(
img,
sys,
p1,
p2,
d,
f,
gdino_model,
rexthinker_processor,
rexthinker_model,
),
cache_examples=False,
)
# Run with streaming text and final visualizations
run_button.click(
fn=process_with_streaming,
inputs=[
input_image,
system_prompt,
gdino_prompt,
referring_prompt,
draw_width,
font_size,
],
outputs=[gdino_output, final_output, llm_output],
)
return demo
def main():
args = parse_args()
models = initialize_models(args)
demo = create_demo(models)
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
if __name__ == "__main__":
main()