import spaces import argparse import json import os os.system("pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124") import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) import sys import threading # Add pre-build setup for Hugging Face Spaces def setup_environment(): """Setup environment for Hugging Face Spaces""" if os.environ.get("SPACE_ID"): # Running on HF Spaces print("Detected Hugging Face Spaces environment") # Run pre-build setup try: import subprocess subprocess.run([sys.executable, "pre_build.py"], check=True) except subprocess.CalledProcessError as e: print(f"Pre-build setup failed: {e}") # Continue anyway, maybe files are already set up # Run setup setup_environment() os.system("pip install -r requirements_hf.txt") import gradio as gr import numpy as np import torch from groundingdino.util.inference import load_model from PIL import Image from qwen_vl_utils import process_vision_info from transformers import ( AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer, ) from tools.inference_tools import ( convert_boxes_from_absolute_to_qwen25_format, inference_gdino, postprocess_and_vis_inference_out, ) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, default="IDEA-Research/Rex-Thinker-GRPO-7B" ) parser.add_argument( "--gdino_config", type=str, default="groundingdino/config/GroundingDINO_SwinT_OGC.py", ) parser.add_argument( "--gdino_weights", type=str, default="weights/groundingdino_swint_ogc.pth", ) return parser.parse_args() def initialize_models(args): # Load GDINO model gdino_model = load_model(args.gdino_config, args.gdino_weights).to("cuda") gdino_model.eval() # Load Rex-Thinker-GRPO model = Qwen2_5_VLForConditionalGeneration.from_pretrained( args.model_path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="auto", ) processor = AutoProcessor.from_pretrained( args.model_path, min_pixels=16 * 28 * 28, max_pixels=1280 * 28 * 28 ) return (gdino_model, processor, model) @spaces.GPU def process_image_with_streaming( image, system_prompt, cate_name, referring_expression, draw_width, font_size, gdino_model, rexthinker_processor, rexthinker_model, ): """ Process image with streaming-like updates using a regular function. """ if isinstance(image, str): image = Image.open(image) elif isinstance(image, np.ndarray): image = Image.fromarray(image) # Run GDINO inference gdino_boxes = inference_gdino( image, [cate_name], gdino_model, TEXT_TRESHOLD=0.25, BOX_TRESHOLD=0.25, ) proposed_box = convert_boxes_from_absolute_to_qwen25_format( gdino_boxes, image.width, image.height ) hint = json.dumps( { f"{cate_name}": proposed_box, } ) question = f"Hint: Object and its coordinates in this image: {hint}\nPlease detect {referring_expression} in the image." # compose input print(f"system_prompt: {system_prompt}") print(f"question: {question}") messages = [ { "role": "system", "content": system_prompt, }, { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": question}, ], }, ] text = rexthinker_processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = rexthinker_processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") input_height = inputs["image_grid_thw"][0][1] * 14 input_width = inputs["image_grid_thw"][0][2] * 14 # Create placeholder visualization with GDINO results placeholder_gdino_vis = image.copy() try: import numpy as np from tools.inference_tools import visualize placeholder_gdino_vis = visualize( placeholder_gdino_vis, gdino_boxes, np.ones(len(gdino_boxes)), font_size=font_size, draw_width=draw_width, ) except: pass # For now, let's use the standard generation approach # We can implement true streaming later with a more complex setup generated_ids = rexthinker_model.generate(**inputs, max_new_tokens=4096) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = rexthinker_processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False, ) output_text = output_text[0] # Now do post-processing with the complete text ref_vis_result, gdino_vis_result = postprocess_and_vis_inference_out( image, output_text, proposed_box, gdino_boxes, font_size=font_size, draw_width=draw_width, input_height=input_height, input_width=input_width, ) return gdino_vis_result, ref_vis_result, output_text def process_image_non_streaming( image, system_prompt, cate_name, referring_expression, draw_width, font_size, gdino_model, rexthinker_processor, rexthinker_model, ): """Non-streaming version for examples""" # Use the regular processing function return process_image_with_streaming( image, system_prompt, cate_name, referring_expression, draw_width, font_size, gdino_model, rexthinker_processor, rexthinker_model, ) def create_streaming_interface(models): """Create a streaming interface using a different approach""" ( gdino_model, rexthinker_processor, rexthinker_model, ) = models @spaces.GPU def process_with_streaming( image, system_prompt, cate_name, referring_expression, draw_width, font_size, ): # Run GDINO inference gdino_boxes = inference_gdino( image, [cate_name], gdino_model, TEXT_TRESHOLD=0.25, BOX_TRESHOLD=0.25, ) proposed_box = convert_boxes_from_absolute_to_qwen25_format( gdino_boxes, image.width, image.height ) hint = json.dumps( { f"{cate_name}": proposed_box, } ) question = f"Hint: Object and its coordinates in this image: {hint}\nPlease detect {referring_expression} in the image." # compose input messages = [ { "role": "system", "content": system_prompt, }, { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": question}, ], }, ] text = rexthinker_processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = rexthinker_processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") input_height = inputs["image_grid_thw"][0][1] * 14 input_width = inputs["image_grid_thw"][0][2] * 14 # Create GDINO visualization gdino_vis = image.copy() try: import numpy as np from tools.inference_tools import visualize gdino_vis = visualize( gdino_vis, gdino_boxes, np.ones(len(gdino_boxes)), font_size=font_size, draw_width=draw_width, ) except: pass # Yield initial state with GDINO visualization yield gdino_vis, None, "Starting generation..." # Use streaming generation streamer = TextIteratorStreamer( rexthinker_processor.tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True, ) generation_kwargs = { **inputs, "max_new_tokens": 4096, "streamer": streamer, "do_sample": False, } # Start generation in a separate thread thread = threading.Thread( target=rexthinker_model.generate, kwargs=generation_kwargs ) thread.start() # Stream text with reduced frequency to minimize flickering streaming_text = "" token_count = 0 for new_text in streamer: streaming_text += new_text token_count += 1 # Update every 5 tokens to reduce flickering further if token_count % 5 == 0: yield gdino_vis, None, streaming_text # Ensure final text is shown yield gdino_vis, None, streaming_text thread.join() # Now do post-processing with the complete text ref_vis_result, gdino_vis_result = postprocess_and_vis_inference_out( image, streaming_text, proposed_box, gdino_boxes, font_size=font_size, draw_width=draw_width, input_height=input_height, input_width=input_width, ) # Final yield with complete visualizations yield gdino_vis_result, ref_vis_result, streaming_text return process_with_streaming def create_demo(models): ( gdino_model, rexthinker_processor, rexthinker_model, ) = models # Get the streaming function process_with_streaming = create_streaming_interface(models) with gr.Blocks() as demo: gr.Markdown(""" # Rex-Thinker Demo - Homepage: https://rexthinker.github.io/ """) with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") gdino_prompt = gr.Textbox( label="Object Category Name to get Candidate boxes", placeholder="person", value="person", ) referring_prompt = gr.Textbox( label="Referring Expression", placeholder="person wearning red shirt and a black hat", value="person wearning red shirt and a black hat", ) system_prompt = gr.Textbox( label="System Prompt", value="A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within and tags, respectively, i.e., reasoning process here answer here .", ) with gr.Row(): draw_width = gr.Slider( minimum=5.0, maximum=100.0, value=10.0, step=1, label="Draw Width for Visualization", ) font_size = gr.Slider( minimum=5.0, maximum=100.0, value=20.0, step=1, label="Font size for Visualization", ) run_button = gr.Button("Run with Streaming", variant="primary") with gr.Column(): gdino_output = gr.Image(label="GroundingDINO Detection") final_output = gr.Image(label="Rex-Thinker Visualization") with gr.Column(): llm_output = gr.Textbox( label="LLM Raw Output", interactive=False, lines=50, max_lines=100 ) # Add examples section gr.Markdown("## Examples") examples = gr.Examples( examples=[ [ "example_images/demo_tomato.jpg", "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within and tags, respectively, i.e., reasoning process here answer here .", "tomato", "ripe tomato", 10, 20, ], [ "example_images/demo_helmet.png", "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within and tags, respectively, i.e., reasoning process here answer here .", "helmet", "the forth helmet from left", 10, 20, ], [ "example_images/demo_person.jpg", "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within and tags, respectively, i.e., reasoning process here answer here .", "person", "person in the red car but not driving", 10, 20, ], [ "example_images/demo_letter.jpg", "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within and tags, respectively, i.e., reasoning process here answer here .", "person", "person wearing cloth that has two letters", 10, 20, ], [ "example_images/demo_dog.jpg", "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within and tags, respectively, i.e., reasoning process here answer here .", "dog", "the dog sleep on the bed with a pot under its body", 10, 20, ], ], inputs=[ input_image, system_prompt, gdino_prompt, referring_prompt, draw_width, font_size, ], outputs=[gdino_output, final_output, llm_output], fn=lambda img, sys, p1, p2, d, f: process_image_non_streaming( img, sys, p1, p2, d, f, gdino_model, rexthinker_processor, rexthinker_model, ), cache_examples=False, ) # Run with streaming text and final visualizations run_button.click( fn=process_with_streaming, inputs=[ input_image, system_prompt, gdino_prompt, referring_prompt, draw_width, font_size, ], outputs=[gdino_output, final_output, llm_output], ) return demo def main(): args = parse_args() models = initialize_models(args) demo = create_demo(models) demo.launch(server_name="0.0.0.0", server_port=7860, share=True) if __name__ == "__main__": main()