Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,582 Bytes
98e9367 e0483c8 66d98ef faab470 e0483c8 98e9367 7e3dc12 e0483c8 7e3dc12 e0483c8 7e3dc12 e0483c8 98e9367 e0483c8 98e9367 e0483c8 98e9367 e0483c8 fdd30f6 e0483c8 5757539 e0483c8 5757539 e0483c8 5757539 e0483c8 5757539 e0483c8 5757539 e0483c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
import spaces
import argparse
import json
import os
os.system("pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124")
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import sys
import threading
# Add pre-build setup for Hugging Face Spaces
def setup_environment():
"""Setup environment for Hugging Face Spaces"""
if os.environ.get("SPACE_ID"): # Running on HF Spaces
print("Detected Hugging Face Spaces environment")
# Run pre-build setup
try:
import subprocess
subprocess.run([sys.executable, "pre_build.py"], check=True)
except subprocess.CalledProcessError as e:
print(f"Pre-build setup failed: {e}")
# Continue anyway, maybe files are already set up
# Run setup
setup_environment()
os.system("pip install -r requirements_hf.txt")
import gradio as gr
import numpy as np
import torch
from groundingdino.util.inference import load_model
from PIL import Image
from qwen_vl_utils import process_vision_info
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer,
)
from tools.inference_tools import (
convert_boxes_from_absolute_to_qwen25_format,
inference_gdino,
postprocess_and_vis_inference_out,
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path", type=str, default="IDEA-Research/Rex-Thinker-GRPO-7B"
)
parser.add_argument(
"--gdino_config",
type=str,
default="groundingdino/config/GroundingDINO_SwinT_OGC.py",
)
parser.add_argument(
"--gdino_weights",
type=str,
default="weights/groundingdino_swint_ogc.pth",
)
return parser.parse_args()
def initialize_models(args):
# Load GDINO model
gdino_model = load_model(args.gdino_config, args.gdino_weights).to("cuda")
gdino_model.eval()
# Load Rex-Thinker-GRPO
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
args.model_path,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
processor = AutoProcessor.from_pretrained(
args.model_path, min_pixels=16 * 28 * 28, max_pixels=1280 * 28 * 28
)
return (gdino_model, processor, model)
@spaces.GPU
def process_image_with_streaming(
image,
system_prompt,
cate_name,
referring_expression,
draw_width,
font_size,
gdino_model,
rexthinker_processor,
rexthinker_model,
):
"""
Process image with streaming-like updates using a regular function.
"""
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Run GDINO inference
gdino_boxes = inference_gdino(
image,
[cate_name],
gdino_model,
TEXT_TRESHOLD=0.25,
BOX_TRESHOLD=0.25,
)
proposed_box = convert_boxes_from_absolute_to_qwen25_format(
gdino_boxes, image.width, image.height
)
hint = json.dumps(
{
f"{cate_name}": proposed_box,
}
)
question = f"Hint: Object and its coordinates in this image: {hint}\nPlease detect {referring_expression} in the image."
# compose input
print(f"system_prompt: {system_prompt}")
print(f"question: {question}")
messages = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": question},
],
},
]
text = rexthinker_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = rexthinker_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
input_height = inputs["image_grid_thw"][0][1] * 14
input_width = inputs["image_grid_thw"][0][2] * 14
# Create placeholder visualization with GDINO results
placeholder_gdino_vis = image.copy()
try:
import numpy as np
from tools.inference_tools import visualize
placeholder_gdino_vis = visualize(
placeholder_gdino_vis,
gdino_boxes,
np.ones(len(gdino_boxes)),
font_size=font_size,
draw_width=draw_width,
)
except:
pass
# For now, let's use the standard generation approach
# We can implement true streaming later with a more complex setup
generated_ids = rexthinker_model.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = rexthinker_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
output_text = output_text[0]
# Now do post-processing with the complete text
ref_vis_result, gdino_vis_result = postprocess_and_vis_inference_out(
image,
output_text,
proposed_box,
gdino_boxes,
font_size=font_size,
draw_width=draw_width,
input_height=input_height,
input_width=input_width,
)
return gdino_vis_result, ref_vis_result, output_text
def process_image_non_streaming(
image,
system_prompt,
cate_name,
referring_expression,
draw_width,
font_size,
gdino_model,
rexthinker_processor,
rexthinker_model,
):
"""Non-streaming version for examples"""
# Use the regular processing function
return process_image_with_streaming(
image,
system_prompt,
cate_name,
referring_expression,
draw_width,
font_size,
gdino_model,
rexthinker_processor,
rexthinker_model,
)
def create_streaming_interface(models):
"""Create a streaming interface using a different approach"""
(
gdino_model,
rexthinker_processor,
rexthinker_model,
) = models
@spaces.GPU
def process_with_streaming(
image,
system_prompt,
cate_name,
referring_expression,
draw_width,
font_size,
):
# Run GDINO inference
gdino_boxes = inference_gdino(
image,
[cate_name],
gdino_model,
TEXT_TRESHOLD=0.25,
BOX_TRESHOLD=0.25,
)
proposed_box = convert_boxes_from_absolute_to_qwen25_format(
gdino_boxes, image.width, image.height
)
hint = json.dumps(
{
f"{cate_name}": proposed_box,
}
)
question = f"Hint: Object and its coordinates in this image: {hint}\nPlease detect {referring_expression} in the image."
# compose input
messages = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": question},
],
},
]
text = rexthinker_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = rexthinker_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
input_height = inputs["image_grid_thw"][0][1] * 14
input_width = inputs["image_grid_thw"][0][2] * 14
# Create GDINO visualization
gdino_vis = image.copy()
try:
import numpy as np
from tools.inference_tools import visualize
gdino_vis = visualize(
gdino_vis,
gdino_boxes,
np.ones(len(gdino_boxes)),
font_size=font_size,
draw_width=draw_width,
)
except:
pass
# Yield initial state with GDINO visualization
yield gdino_vis, None, "Starting generation..."
# Use streaming generation
streamer = TextIteratorStreamer(
rexthinker_processor.tokenizer,
timeout=60,
skip_prompt=True,
skip_special_tokens=True,
)
generation_kwargs = {
**inputs,
"max_new_tokens": 4096,
"streamer": streamer,
"do_sample": False,
}
# Start generation in a separate thread
thread = threading.Thread(
target=rexthinker_model.generate, kwargs=generation_kwargs
)
thread.start()
# Stream text with reduced frequency to minimize flickering
streaming_text = ""
token_count = 0
for new_text in streamer:
streaming_text += new_text
token_count += 1
# Update every 5 tokens to reduce flickering further
if token_count % 5 == 0:
yield gdino_vis, None, streaming_text
# Ensure final text is shown
yield gdino_vis, None, streaming_text
thread.join()
# Now do post-processing with the complete text
ref_vis_result, gdino_vis_result = postprocess_and_vis_inference_out(
image,
streaming_text,
proposed_box,
gdino_boxes,
font_size=font_size,
draw_width=draw_width,
input_height=input_height,
input_width=input_width,
)
# Final yield with complete visualizations
yield gdino_vis_result, ref_vis_result, streaming_text
return process_with_streaming
def create_demo(models):
(
gdino_model,
rexthinker_processor,
rexthinker_model,
) = models
# Get the streaming function
process_with_streaming = create_streaming_interface(models)
with gr.Blocks() as demo:
gr.Markdown("""
# Rex-Thinker Demo
- Homepage: https://rexthinker.github.io/
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
gdino_prompt = gr.Textbox(
label="Object Category Name to get Candidate boxes",
placeholder="person",
value="person",
)
referring_prompt = gr.Textbox(
label="Referring Expression",
placeholder="person wearning red shirt and a black hat",
value="person wearning red shirt and a black hat",
)
system_prompt = gr.Textbox(
label="System Prompt",
value="A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
)
with gr.Row():
draw_width = gr.Slider(
minimum=5.0,
maximum=100.0,
value=10.0,
step=1,
label="Draw Width for Visualization",
)
font_size = gr.Slider(
minimum=5.0,
maximum=100.0,
value=20.0,
step=1,
label="Font size for Visualization",
)
run_button = gr.Button("Run with Streaming", variant="primary")
with gr.Column():
gdino_output = gr.Image(label="GroundingDINO Detection")
final_output = gr.Image(label="Rex-Thinker Visualization")
with gr.Column():
llm_output = gr.Textbox(
label="LLM Raw Output", interactive=False, lines=50, max_lines=100
)
# Add examples section
gr.Markdown("## Examples")
examples = gr.Examples(
examples=[
[
"example_images/demo_tomato.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"tomato",
"ripe tomato",
10,
20,
],
[
"example_images/demo_helmet.png",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"helmet",
"the forth helmet from left",
10,
20,
],
[
"example_images/demo_person.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"person",
"person in the red car but not driving",
10,
20,
],
[
"example_images/demo_letter.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"person",
"person wearing cloth that has two letters",
10,
20,
],
[
"example_images/demo_dog.jpg",
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>.",
"dog",
"the dog sleep on the bed with a pot under its body",
10,
20,
],
],
inputs=[
input_image,
system_prompt,
gdino_prompt,
referring_prompt,
draw_width,
font_size,
],
outputs=[gdino_output, final_output, llm_output],
fn=lambda img, sys, p1, p2, d, f: process_image_non_streaming(
img,
sys,
p1,
p2,
d,
f,
gdino_model,
rexthinker_processor,
rexthinker_model,
),
cache_examples=False,
)
# Run with streaming text and final visualizations
run_button.click(
fn=process_with_streaming,
inputs=[
input_image,
system_prompt,
gdino_prompt,
referring_prompt,
draw_width,
font_size,
],
outputs=[gdino_output, final_output, llm_output],
)
return demo
def main():
args = parse_args()
models = initialize_models(args)
demo = create_demo(models)
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
if __name__ == "__main__":
main()
|