Spaces:
Sleeping
Sleeping
import gradio as gr | |
from diffusers import DiffusionPipeline | |
import torch | |
# Initialize the pipeline | |
pipe = DiffusionPipeline.from_pretrained("Lookingsoft-team/object_detection") | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
def detect_objects(image): | |
if image is None: | |
return None | |
# Process the image through the pipeline | |
# Note: This is a placeholder - actual processing will depend on the model's specific requirements | |
results = pipe(image=image) | |
# Return the processed image with detections | |
return results.images[0] | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
title="Object Detection", | |
description="Upload an image and the model will detect objects in it!", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |