Spaces:
Sleeping
Sleeping
Varun
commited on
Commit
·
2932b3e
1
Parent(s):
803b87c
Implement object detection functionality in app.py using Gradio and DiffusionPipeline
Browse files- app.py +28 -4
- requirements.txt +5 -0
app.py
CHANGED
@@ -1,9 +1,33 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
def greet(name):
|
5 |
-
return "Hello " + name + "!!"
|
6 |
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
import torch
|
4 |
|
5 |
+
# Initialize the pipeline
|
6 |
+
pipe = DiffusionPipeline.from_pretrained("Lookingsoft-team/object_detection")
|
7 |
+
if torch.cuda.is_available():
|
8 |
+
pipe = pipe.to("cuda")
|
9 |
|
|
|
|
|
10 |
|
11 |
+
def detect_objects(image):
|
12 |
+
if image is None:
|
13 |
+
return None
|
14 |
|
15 |
+
# Process the image through the pipeline
|
16 |
+
# Note: This is a placeholder - actual processing will depend on the model's specific requirements
|
17 |
+
results = pipe(image=image)
|
18 |
+
|
19 |
+
# Return the processed image with detections
|
20 |
+
return results.images[0]
|
21 |
+
|
22 |
+
|
23 |
+
# Create Gradio interface
|
24 |
+
demo = gr.Interface(
|
25 |
+
fn=detect_objects,
|
26 |
+
inputs=gr.Image(type="pil"),
|
27 |
+
outputs=gr.Image(type="pil"),
|
28 |
+
title="Object Detection",
|
29 |
+
description="Upload an image and the model will detect objects in it!",
|
30 |
+
)
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=5.32.1
|
2 |
+
torch
|
3 |
+
diffusers
|
4 |
+
transformers
|
5 |
+
accelerate
|