import gradio as gr from diffusers import DiffusionPipeline import torch # Initialize the pipeline pipe = DiffusionPipeline.from_pretrained("Lookingsoft-team/object_detection") if torch.cuda.is_available(): pipe = pipe.to("cuda") def detect_objects(image): if image is None: return None # Process the image through the pipeline # Note: This is a placeholder - actual processing will depend on the model's specific requirements results = pipe(image=image) # Return the processed image with detections return results.images[0] # Create Gradio interface demo = gr.Interface( fn=detect_objects, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), title="Object Detection", description="Upload an image and the model will detect objects in it!", ) if __name__ == "__main__": demo.launch()