ap3 / app.py
Reality123b's picture
Update app.py
e41b8bc verified
raw
history blame
7.95 kB
from fastapi import FastAPI
from fastapi.responses import StreamingResponse, HTMLResponse
from pydantic import BaseModel
from transformers import pipeline, TextStreamer
import asyncio
import httpx
import time
import queue
import threading
import random
import re
# =========================
# CONFIG
# =========================
UPDATE_INTERVAL = 60 # seconds between KG updates
MAX_KG_SIZE = 50 # limit stored KG nodes to avoid memory bloat
# =========================
# MODELS
# =========================
# Main generator
generator = pipeline(
"text-generation",
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
device="cpu"
)
# Query + summarization model (SmolLM2 instruct)
query_generator = pipeline(
"text-generation",
model="HuggingFaceTB/SmolLM2-360M-Instruct",
device="cpu"
)
summarizer = query_generator # same model for now
# =========================
# KNOWLEDGE GRAPH
# =========================
knowledge_graph = {}
# =========================
# FASTAPI
# =========================
app = FastAPI()
class ModelInput(BaseModel):
prompt: str
max_new_tokens: int = 64000
# =========================
# UTILS
# =========================
async def fetch_ddg_search(query: str):
url = "https://api.duckduckgo.com/"
params = {
"q": query,
"format": "json",
"no_redirect": "1",
"no_html": "1",
"skip_disambig": "1"
}
async with httpx.AsyncClient() as client:
resp = await client.get(url, params=params, timeout=15)
return resp.json()
def clean_ddg_text(ddg_json):
abstract = ddg_json.get("AbstractText", "")
related = ddg_json.get("RelatedTopics", [])
related_texts = []
for item in related:
if isinstance(item, dict) and "Text" in item:
related_texts.append(item["Text"])
elif isinstance(item, dict) and "Topics" in item:
for sub in item["Topics"]:
if "Text" in sub:
related_texts.append(sub["Text"])
combined = (abstract + " " + " ".join(related_texts)).strip()
combined = re.sub(r"\s+", " ", combined)
if len(combined) > 1000:
combined = combined[:1000] + "..."
return combined
def generate_dynamic_query():
prompt = (
"Generate a short, specific search query about technology, startups, AI, or science. "
"Be creative, realistic, and output only the query with no extra words."
)
output = query_generator(
prompt,
max_new_tokens=32,
truncation=True,
do_sample=True,
temperature=0.9
)
query = output[0]["generated_text"].strip().split("\n")[0]
return query
def summarize_text(text: str):
prompt = f"Summarize this concisely:\n{text}\nSummary:"
output = summarizer(
prompt,
max_new_tokens=256,
truncation=True,
do_sample=False
)
return output[0]["generated_text"].strip()
def inject_relevant_kg(prompt: str):
"""Find relevant KG entries and inject into prompt."""
if not knowledge_graph:
return prompt
best_match = None
for key, node in knowledge_graph.items():
if any(word.lower() in prompt.lower() for word in key.split()):
best_match = node
break
if best_match:
return f"{prompt}\n\nRelevant knowledge from memory:\n{best_match['summary']}"
return prompt
# =========================
# BACKGROUND TASK
# =========================
async def update_knowledge_graph_periodically():
while True:
try:
query = generate_dynamic_query()
print(f"[KG Updater] Searching DDG for query: {query}")
ddg_data = await fetch_ddg_search(query)
cleaned = clean_ddg_text(ddg_data)
if not cleaned or len(cleaned) < 50:
print("[KG Updater] Too little info found, retrying next cycle...")
else:
summary = summarize_text(cleaned)
knowledge_graph[query] = {
"raw_text": cleaned,
"summary": summary,
"timestamp": time.time()
}
if len(knowledge_graph) > MAX_KG_SIZE:
# remove oldest
oldest_key = min(knowledge_graph, key=lambda k: knowledge_graph[k]['timestamp'])
del knowledge_graph[oldest_key]
print(f"[KG Updater] Knowledge graph updated for query: {query}")
except Exception as e:
print(f"[KG Updater] Error: {e}")
await asyncio.sleep(UPDATE_INTERVAL)
@app.on_event("startup")
async def startup_event():
asyncio.create_task(update_knowledge_graph_periodically())
# =========================
# STREAMING ENDPOINT
# =========================
@app.post("/generate/stream")
async def generate_stream(input: ModelInput):
q = queue.Queue()
def run_generation():
try:
streamer = TextStreamer(generator.tokenizer, skip_prompt=True)
def enqueue_token(token):
q.put(token)
streamer.put = enqueue_token
enriched_prompt = inject_relevant_kg(input.prompt)
generator(
enriched_prompt,
max_new_tokens=input.max_new_tokens,
do_sample=False,
streamer=streamer
)
except Exception as e:
q.put(f"[ERROR] {e}")
finally:
q.put(None)
thread = threading.Thread(target=run_generation)
thread.start()
async def event_generator():
loop = asyncio.get_event_loop()
while True:
token = await loop.run_in_executor(None, q.get)
if token is None:
break
yield token
return StreamingResponse(event_generator(), media_type="text/plain")
# =========================
# VIEW KG
# =========================
@app.get("/knowledge")
async def get_knowledge():
return knowledge_graph
# =========================
# TEST CLIENT PAGE
# =========================
@app.get("/", response_class=HTMLResponse)
async def root():
return """
<!DOCTYPE html>
<html>
<head><title>Xylaria Cognitive Worker</title></head>
<body>
<h2>Xylaria Cognitive Worker</h2>
<textarea id="prompt" rows="4" cols="60">Explain how AI startups secure funding</textarea><br/>
<button onclick="startStreaming()">Generate</button>
<pre id="output" style="white-space: pre-wrap; background:#eee; padding:10px; border-radius:5px; max-height:400px; overflow:auto;"></pre>
<h3>Knowledge Graph</h3>
<pre id="kg" style="background:#ddd; padding:10px; max-height:300px; overflow:auto;"></pre>
<script>
async function startStreaming() {
const prompt = document.getElementById("prompt").value;
const output = document.getElementById("output");
output.textContent = "";
const response = await fetch("/generate/stream", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ prompt: prompt, max_new_tokens: 64000 })
});
const reader = response.body.getReader();
const decoder = new TextDecoder();
while(true) {
const {done, value} = await reader.read();
if(done) break;
const chunk = decoder.decode(value, {stream: true});
output.textContent += chunk;
output.scrollTop = output.scrollHeight;
}
}
async function fetchKG() {
const kgPre = document.getElementById("kg");
const res = await fetch("/knowledge");
const data = await res.json();
kgPre.textContent = JSON.stringify(data, null, 2);
}
setInterval(fetchKG, 10000);
window.onload = fetchKG;
</script>
</body>
</html>
"""