from fastapi import FastAPI from fastapi.responses import StreamingResponse, HTMLResponse from pydantic import BaseModel from transformers import pipeline, TextStreamer import asyncio import httpx import time import queue import threading import random import re # ========================= # CONFIG # ========================= UPDATE_INTERVAL = 60 # seconds between KG updates MAX_KG_SIZE = 50 # limit stored KG nodes to avoid memory bloat # ========================= # MODELS # ========================= # Main generator generator = pipeline( "text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", device="cpu" ) # Query + summarization model (SmolLM2 instruct) query_generator = pipeline( "text-generation", model="HuggingFaceTB/SmolLM2-360M-Instruct", device="cpu" ) summarizer = query_generator # same model for now # ========================= # KNOWLEDGE GRAPH # ========================= knowledge_graph = {} # ========================= # FASTAPI # ========================= app = FastAPI() class ModelInput(BaseModel): prompt: str max_new_tokens: int = 64000 # ========================= # UTILS # ========================= async def fetch_ddg_search(query: str): url = "https://api.duckduckgo.com/" params = { "q": query, "format": "json", "no_redirect": "1", "no_html": "1", "skip_disambig": "1" } async with httpx.AsyncClient() as client: resp = await client.get(url, params=params, timeout=15) return resp.json() def clean_ddg_text(ddg_json): abstract = ddg_json.get("AbstractText", "") related = ddg_json.get("RelatedTopics", []) related_texts = [] for item in related: if isinstance(item, dict) and "Text" in item: related_texts.append(item["Text"]) elif isinstance(item, dict) and "Topics" in item: for sub in item["Topics"]: if "Text" in sub: related_texts.append(sub["Text"]) combined = (abstract + " " + " ".join(related_texts)).strip() combined = re.sub(r"\s+", " ", combined) if len(combined) > 1000: combined = combined[:1000] + "..." return combined def generate_dynamic_query(): prompt = ( "Generate a short, specific search query about technology, startups, AI, or science. " "Be creative, realistic, and output only the query with no extra words." ) output = query_generator( prompt, max_new_tokens=32, truncation=True, do_sample=True, temperature=0.9 ) query = output[0]["generated_text"].strip().split("\n")[0] return query def summarize_text(text: str): prompt = f"Summarize this concisely:\n{text}\nSummary:" output = summarizer( prompt, max_new_tokens=256, truncation=True, do_sample=False ) return output[0]["generated_text"].strip() def inject_relevant_kg(prompt: str): """Find relevant KG entries and inject into prompt.""" if not knowledge_graph: return prompt best_match = None for key, node in knowledge_graph.items(): if any(word.lower() in prompt.lower() for word in key.split()): best_match = node break if best_match: return f"{prompt}\n\nRelevant knowledge from memory:\n{best_match['summary']}" return prompt # ========================= # BACKGROUND TASK # ========================= async def update_knowledge_graph_periodically(): while True: try: query = generate_dynamic_query() print(f"[KG Updater] Searching DDG for query: {query}") ddg_data = await fetch_ddg_search(query) cleaned = clean_ddg_text(ddg_data) if not cleaned or len(cleaned) < 50: print("[KG Updater] Too little info found, retrying next cycle...") else: summary = summarize_text(cleaned) knowledge_graph[query] = { "raw_text": cleaned, "summary": summary, "timestamp": time.time() } if len(knowledge_graph) > MAX_KG_SIZE: # remove oldest oldest_key = min(knowledge_graph, key=lambda k: knowledge_graph[k]['timestamp']) del knowledge_graph[oldest_key] print(f"[KG Updater] Knowledge graph updated for query: {query}") except Exception as e: print(f"[KG Updater] Error: {e}") await asyncio.sleep(UPDATE_INTERVAL) @app.on_event("startup") async def startup_event(): asyncio.create_task(update_knowledge_graph_periodically()) # ========================= # STREAMING ENDPOINT # ========================= @app.post("/generate/stream") async def generate_stream(input: ModelInput): q = queue.Queue() def run_generation(): try: streamer = TextStreamer(generator.tokenizer, skip_prompt=True) def enqueue_token(token): q.put(token) streamer.put = enqueue_token enriched_prompt = inject_relevant_kg(input.prompt) generator( enriched_prompt, max_new_tokens=input.max_new_tokens, do_sample=False, streamer=streamer ) except Exception as e: q.put(f"[ERROR] {e}") finally: q.put(None) thread = threading.Thread(target=run_generation) thread.start() async def event_generator(): loop = asyncio.get_event_loop() while True: token = await loop.run_in_executor(None, q.get) if token is None: break yield token return StreamingResponse(event_generator(), media_type="text/plain") # ========================= # VIEW KG # ========================= @app.get("/knowledge") async def get_knowledge(): return knowledge_graph # ========================= # TEST CLIENT PAGE # ========================= @app.get("/", response_class=HTMLResponse) async def root(): return """