File size: 7,946 Bytes
1ea4540 6e0397b e41b8bc 2145ed0 e41b8bc 2145ed0 1ea4540 e41b8bc 3003014 5879220 2145ed0 3003014 6e0397b e41b8bc 1ea4540 e41b8bc 1ea4540 e41b8bc 2145ed0 6e0397b e41b8bc 1ea4540 e41b8bc 1ea4540 e41b8bc 1ea4540 e41b8bc 1ea4540 e41b8bc 1ea4540 e41b8bc 8a72144 e41b8bc 8a72144 e41b8bc 8a72144 e41b8bc 2145ed0 e41b8bc 1ea4540 8a72144 e41b8bc 2145ed0 1ea4540 2145ed0 e41b8bc 2145ed0 e41b8bc 2145ed0 e41b8bc 2145ed0 1ea4540 2145ed0 1ea4540 e41b8bc 2145ed0 e41b8bc 1ea4540 2145ed0 1ea4540 e41b8bc 2145ed0 1ea4540 2145ed0 1ea4540 2145ed0 e41b8bc 2145ed0 e41b8bc 2145ed0 e41b8bc 1ea4540 6e0397b 1ea4540 e41b8bc 1ea4540 e41b8bc 1ea4540 e41b8bc 1ea4540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from fastapi import FastAPI
from fastapi.responses import StreamingResponse, HTMLResponse
from pydantic import BaseModel
from transformers import pipeline, TextStreamer
import asyncio
import httpx
import time
import queue
import threading
import random
import re
# =========================
# CONFIG
# =========================
UPDATE_INTERVAL = 60 # seconds between KG updates
MAX_KG_SIZE = 50 # limit stored KG nodes to avoid memory bloat
# =========================
# MODELS
# =========================
# Main generator
generator = pipeline(
"text-generation",
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
device="cpu"
)
# Query + summarization model (SmolLM2 instruct)
query_generator = pipeline(
"text-generation",
model="HuggingFaceTB/SmolLM2-360M-Instruct",
device="cpu"
)
summarizer = query_generator # same model for now
# =========================
# KNOWLEDGE GRAPH
# =========================
knowledge_graph = {}
# =========================
# FASTAPI
# =========================
app = FastAPI()
class ModelInput(BaseModel):
prompt: str
max_new_tokens: int = 64000
# =========================
# UTILS
# =========================
async def fetch_ddg_search(query: str):
url = "https://api.duckduckgo.com/"
params = {
"q": query,
"format": "json",
"no_redirect": "1",
"no_html": "1",
"skip_disambig": "1"
}
async with httpx.AsyncClient() as client:
resp = await client.get(url, params=params, timeout=15)
return resp.json()
def clean_ddg_text(ddg_json):
abstract = ddg_json.get("AbstractText", "")
related = ddg_json.get("RelatedTopics", [])
related_texts = []
for item in related:
if isinstance(item, dict) and "Text" in item:
related_texts.append(item["Text"])
elif isinstance(item, dict) and "Topics" in item:
for sub in item["Topics"]:
if "Text" in sub:
related_texts.append(sub["Text"])
combined = (abstract + " " + " ".join(related_texts)).strip()
combined = re.sub(r"\s+", " ", combined)
if len(combined) > 1000:
combined = combined[:1000] + "..."
return combined
def generate_dynamic_query():
prompt = (
"Generate a short, specific search query about technology, startups, AI, or science. "
"Be creative, realistic, and output only the query with no extra words."
)
output = query_generator(
prompt,
max_new_tokens=32,
truncation=True,
do_sample=True,
temperature=0.9
)
query = output[0]["generated_text"].strip().split("\n")[0]
return query
def summarize_text(text: str):
prompt = f"Summarize this concisely:\n{text}\nSummary:"
output = summarizer(
prompt,
max_new_tokens=256,
truncation=True,
do_sample=False
)
return output[0]["generated_text"].strip()
def inject_relevant_kg(prompt: str):
"""Find relevant KG entries and inject into prompt."""
if not knowledge_graph:
return prompt
best_match = None
for key, node in knowledge_graph.items():
if any(word.lower() in prompt.lower() for word in key.split()):
best_match = node
break
if best_match:
return f"{prompt}\n\nRelevant knowledge from memory:\n{best_match['summary']}"
return prompt
# =========================
# BACKGROUND TASK
# =========================
async def update_knowledge_graph_periodically():
while True:
try:
query = generate_dynamic_query()
print(f"[KG Updater] Searching DDG for query: {query}")
ddg_data = await fetch_ddg_search(query)
cleaned = clean_ddg_text(ddg_data)
if not cleaned or len(cleaned) < 50:
print("[KG Updater] Too little info found, retrying next cycle...")
else:
summary = summarize_text(cleaned)
knowledge_graph[query] = {
"raw_text": cleaned,
"summary": summary,
"timestamp": time.time()
}
if len(knowledge_graph) > MAX_KG_SIZE:
# remove oldest
oldest_key = min(knowledge_graph, key=lambda k: knowledge_graph[k]['timestamp'])
del knowledge_graph[oldest_key]
print(f"[KG Updater] Knowledge graph updated for query: {query}")
except Exception as e:
print(f"[KG Updater] Error: {e}")
await asyncio.sleep(UPDATE_INTERVAL)
@app.on_event("startup")
async def startup_event():
asyncio.create_task(update_knowledge_graph_periodically())
# =========================
# STREAMING ENDPOINT
# =========================
@app.post("/generate/stream")
async def generate_stream(input: ModelInput):
q = queue.Queue()
def run_generation():
try:
streamer = TextStreamer(generator.tokenizer, skip_prompt=True)
def enqueue_token(token):
q.put(token)
streamer.put = enqueue_token
enriched_prompt = inject_relevant_kg(input.prompt)
generator(
enriched_prompt,
max_new_tokens=input.max_new_tokens,
do_sample=False,
streamer=streamer
)
except Exception as e:
q.put(f"[ERROR] {e}")
finally:
q.put(None)
thread = threading.Thread(target=run_generation)
thread.start()
async def event_generator():
loop = asyncio.get_event_loop()
while True:
token = await loop.run_in_executor(None, q.get)
if token is None:
break
yield token
return StreamingResponse(event_generator(), media_type="text/plain")
# =========================
# VIEW KG
# =========================
@app.get("/knowledge")
async def get_knowledge():
return knowledge_graph
# =========================
# TEST CLIENT PAGE
# =========================
@app.get("/", response_class=HTMLResponse)
async def root():
return """
<!DOCTYPE html>
<html>
<head><title>Xylaria Cognitive Worker</title></head>
<body>
<h2>Xylaria Cognitive Worker</h2>
<textarea id="prompt" rows="4" cols="60">Explain how AI startups secure funding</textarea><br/>
<button onclick="startStreaming()">Generate</button>
<pre id="output" style="white-space: pre-wrap; background:#eee; padding:10px; border-radius:5px; max-height:400px; overflow:auto;"></pre>
<h3>Knowledge Graph</h3>
<pre id="kg" style="background:#ddd; padding:10px; max-height:300px; overflow:auto;"></pre>
<script>
async function startStreaming() {
const prompt = document.getElementById("prompt").value;
const output = document.getElementById("output");
output.textContent = "";
const response = await fetch("/generate/stream", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ prompt: prompt, max_new_tokens: 64000 })
});
const reader = response.body.getReader();
const decoder = new TextDecoder();
while(true) {
const {done, value} = await reader.read();
if(done) break;
const chunk = decoder.decode(value, {stream: true});
output.textContent += chunk;
output.scrollTop = output.scrollHeight;
}
}
async function fetchKG() {
const kgPre = document.getElementById("kg");
const res = await fetch("/knowledge");
const data = await res.json();
kgPre.textContent = JSON.stringify(data, null, 2);
}
setInterval(fetchKG, 10000);
window.onload = fetchKG;
</script>
</body>
</html>
"""
|