RAG-Chatbot / app.py
Jesudian's picture
Upload 3 files
bc4be0a verified
import fitz
import tempfile
import gradio as gr
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline
# Load and chunk PDF
def load_pdf_chunks(file_path, chunk_size=500, chunk_overlap=50):
doc = fitz.open(file_path)
text = "\n".join([page.get_text() for page in doc])
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
chunks = splitter.split_text(text)
return [Document(page_content=chunk, metadata={"source": file_path}) for chunk in chunks if chunk.strip()]
# Setup RAG pipeline
def setup_rag(documents):
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
vectorstore = FAISS.from_documents(documents, embeddings)
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 4, "fetch_k": 8, "lambda_mult": 0.5})
gen_pipeline = pipeline("text2text-generation", model="google/flan-t5-base", max_length=128)
llm = HuggingFacePipeline(pipeline=gen_pipeline)
chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
return chain
# Global RAG chain (updated on upload)
qa_chain = None
def upload_pdf(file):
global qa_chain
pdf_path = file.name
docs = load_pdf_chunks(pdf_path)
qa_chain = setup_rag(docs)
return "PDF uploaded and indexed!"
def query_rag(question):
if qa_chain is None:
return "Upload a PDF first!"
result = qa_chain({"query": question})
return result["result"]
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🧠 RAG App with MMR + PDF Upload (Hugging Face Demo)")
with gr.Row():
file = gr.File(label="Upload a PDF", file_types=[".pdf"])
upload_btn = gr.Button("Upload and Index")
status = gr.Textbox(label="Status")
upload_btn.click(upload_pdf, inputs=file, outputs=status)
with gr.Row():
question = gr.Textbox(label="Enter your question")
answer = gr.Textbox(label="Answer")
answer_btn = gr.Button("Answer")
answer_btn.click(query_rag, inputs=question, outputs=answer)
if __name__ == "__main__":
demo.launch()