File size: 2,419 Bytes
bc4be0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import fitz
import tempfile
import gradio as gr

from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline

# Load and chunk PDF
def load_pdf_chunks(file_path, chunk_size=500, chunk_overlap=50):
    doc = fitz.open(file_path)
    text = "\n".join([page.get_text() for page in doc])
    splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    chunks = splitter.split_text(text)
    return [Document(page_content=chunk, metadata={"source": file_path}) for chunk in chunks if chunk.strip()]

# Setup RAG pipeline
def setup_rag(documents):
    embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
    vectorstore = FAISS.from_documents(documents, embeddings)
    retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 4, "fetch_k": 8, "lambda_mult": 0.5})
    gen_pipeline = pipeline("text2text-generation", model="google/flan-t5-base", max_length=128)
    llm = HuggingFacePipeline(pipeline=gen_pipeline)
    chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
    return chain

# Global RAG chain (updated on upload)
qa_chain = None

def upload_pdf(file):
    global qa_chain
    pdf_path = file.name
    docs = load_pdf_chunks(pdf_path)
    qa_chain = setup_rag(docs)
    return "PDF uploaded and indexed!"

def query_rag(question):
    if qa_chain is None:
        return "Upload a PDF first!"
    result = qa_chain({"query": question})
    return result["result"]

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("## 🧠 RAG App with MMR + PDF Upload (Hugging Face Demo)")
    with gr.Row():
        file = gr.File(label="Upload a PDF", file_types=[".pdf"])
        upload_btn = gr.Button("Upload and Index")
    status = gr.Textbox(label="Status")
    upload_btn.click(upload_pdf, inputs=file, outputs=status)

    with gr.Row():
        question = gr.Textbox(label="Enter your question")
        answer = gr.Textbox(label="Answer")
        answer_btn = gr.Button("Answer")
    answer_btn.click(query_rag, inputs=question, outputs=answer)

if __name__ == "__main__":
    demo.launch()