Spaces:
Sleeping
Sleeping
Upload 3 files
Browse filesRequired files are added to the repo
- README.md +14 -5
- app.py +63 -0
- requirements.txt +7 -0
README.md
CHANGED
@@ -1,13 +1,22 @@
|
|
1 |
---
|
2 |
-
title: RAG
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.29.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: RAG with MMR + PDF Upload
|
3 |
+
emoji: π
|
4 |
colorFrom: blue
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.29.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
# π§ Retrieval-Augmented Generation with MMR and PDF Upload
|
14 |
+
|
15 |
+
This Gradio demo allows you to:
|
16 |
+
|
17 |
+
- Upload a PDF document
|
18 |
+
- Chunk the content and embed using `MiniLM`
|
19 |
+
- Store and search chunks using FAISS with **Maximal Marginal Relevance (MMR)**
|
20 |
+
- Answer questions using `FLAN-T5`
|
21 |
+
|
22 |
+
> Powered by LangChain + HuggingFace + Gradio + FAISS
|
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fitz
|
2 |
+
import tempfile
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain.docstore.document import Document
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain_community.llms import HuggingFacePipeline
|
11 |
+
from transformers import pipeline
|
12 |
+
|
13 |
+
# Load and chunk PDF
|
14 |
+
def load_pdf_chunks(file_path, chunk_size=500, chunk_overlap=50):
|
15 |
+
doc = fitz.open(file_path)
|
16 |
+
text = "\n".join([page.get_text() for page in doc])
|
17 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
18 |
+
chunks = splitter.split_text(text)
|
19 |
+
return [Document(page_content=chunk, metadata={"source": file_path}) for chunk in chunks if chunk.strip()]
|
20 |
+
|
21 |
+
# Setup RAG pipeline
|
22 |
+
def setup_rag(documents):
|
23 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
24 |
+
vectorstore = FAISS.from_documents(documents, embeddings)
|
25 |
+
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 4, "fetch_k": 8, "lambda_mult": 0.5})
|
26 |
+
gen_pipeline = pipeline("text2text-generation", model="google/flan-t5-base", max_length=128)
|
27 |
+
llm = HuggingFacePipeline(pipeline=gen_pipeline)
|
28 |
+
chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
|
29 |
+
return chain
|
30 |
+
|
31 |
+
# Global RAG chain (updated on upload)
|
32 |
+
qa_chain = None
|
33 |
+
|
34 |
+
def upload_pdf(file):
|
35 |
+
global qa_chain
|
36 |
+
pdf_path = file.name
|
37 |
+
docs = load_pdf_chunks(pdf_path)
|
38 |
+
qa_chain = setup_rag(docs)
|
39 |
+
return "PDF uploaded and indexed!"
|
40 |
+
|
41 |
+
def query_rag(question):
|
42 |
+
if qa_chain is None:
|
43 |
+
return "Upload a PDF first!"
|
44 |
+
result = qa_chain({"query": question})
|
45 |
+
return result["result"]
|
46 |
+
|
47 |
+
# Gradio UI
|
48 |
+
with gr.Blocks() as demo:
|
49 |
+
gr.Markdown("## π§ RAG App with MMR + PDF Upload (Hugging Face Demo)")
|
50 |
+
with gr.Row():
|
51 |
+
file = gr.File(label="Upload a PDF", file_types=[".pdf"])
|
52 |
+
upload_btn = gr.Button("Upload and Index")
|
53 |
+
status = gr.Textbox(label="Status")
|
54 |
+
upload_btn.click(upload_pdf, inputs=file, outputs=status)
|
55 |
+
|
56 |
+
with gr.Row():
|
57 |
+
question = gr.Textbox(label="Enter your question")
|
58 |
+
answer = gr.Textbox(label="Answer")
|
59 |
+
answer_btn = gr.Button("Answer")
|
60 |
+
answer_btn.click(query_rag, inputs=question, outputs=answer)
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
langchain
|
3 |
+
langchain-community
|
4 |
+
sentence-transformers
|
5 |
+
transformers
|
6 |
+
faiss-cpu
|
7 |
+
pymupdf
|