coldlike's picture
Added correct path to app.py
4bf030b
---
title: Malaria Classification
emoji: 🧬
colorFrom: green
colorTo: red
sdk: streamlit
sdk_version: "1.45.1"
app_file: app/app.py
pinned: false
---
# 🧬 Malaria Cell Classifier with Grad-CAM & Streamlit UI
A deep learning-based malaria detection system using ResNet50 and Grad-CAM explainability.
## πŸš€ Features
- βœ… Binary classification of blood smear images (`Infected` / `Uninfected`)
- πŸ” Grad-CAM visualizations to highlight infected regions
- 🌐 Interactive Streamlit web interface
- πŸ“¦ Easy-to-deploy structure
## πŸ› οΈ Built With
- [PyTorch](https://pytorch.org/)
- [Streamlit](https://streamlit.io/)
- [Grad-CAM](https://arxiv.org/abs/1610.02391)
- [ResNet50](https://pytorch.org/vision/stable/models.html)
## πŸ“¦ Dataset
Uses the [Malaria Cell Images Dataset](https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria)
## πŸ“ Folder Structure
Place raw images in:
data/cell_images/
β”œβ”€β”€ Parasitized/
└── Uninfected/
## Here's a quick preview of the app in action:
![Malaria Classifier Demo](demo.gif)
## πŸ§ͺ Usage
## πŸ› οΈ Requirements
Install dependencies:
```bash
pip install torch torchvision streamlit opencv-python matplotlib scikit-learn
```