Spaces:
Sleeping
Sleeping
File size: 1,224 Bytes
a35454a 4bf030b a35454a faf90bc 55459f2 faf90bc 55459f2 faf90bc 4422592 faf90bc 55459f2 faf90bc 55459f2 faf90bc 55459f2 faf90bc 55459f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
title: Malaria Classification
emoji: π§¬
colorFrom: green
colorTo: red
sdk: streamlit
sdk_version: "1.45.1"
app_file: app/app.py
pinned: false
---
# 𧬠Malaria Cell Classifier with Grad-CAM & Streamlit UI
A deep learning-based malaria detection system using ResNet50 and Grad-CAM explainability.
## π Features
- β
Binary classification of blood smear images (`Infected` / `Uninfected`)
- π Grad-CAM visualizations to highlight infected regions
- π Interactive Streamlit web interface
- π¦ Easy-to-deploy structure
## π οΈ Built With
- [PyTorch](https://pytorch.org/)
- [Streamlit](https://streamlit.io/)
- [Grad-CAM](https://arxiv.org/abs/1610.02391)
- [ResNet50](https://pytorch.org/vision/stable/models.html)
## π¦ Dataset
Uses the [Malaria Cell Images Dataset](https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria)
## π Folder Structure
Place raw images in:
data/cell_images/
βββ Parasitized/
βββ Uninfected/
## Here's a quick preview of the app in action:

## π§ͺ Usage
## π οΈ Requirements
Install dependencies:
```bash
pip install torch torchvision streamlit opencv-python matplotlib scikit-learn
```
|