File size: 1,224 Bytes
a35454a
 
 
 
 
 
4bf030b
 
a35454a
 
 
faf90bc
 
 
 
 
 
 
 
 
 
 
 
 
55459f2
 
 
 
faf90bc
 
 
55459f2
faf90bc
 
 
 
 
4422592
 
faf90bc
55459f2
faf90bc
55459f2
faf90bc
 
 
55459f2
 
 
 
faf90bc
55459f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
title: Malaria Classification
emoji: 🧬
colorFrom: green
colorTo: red
sdk: streamlit
sdk_version: "1.45.1"
app_file: app/app.py
pinned: false
---

# 🧬 Malaria Cell Classifier with Grad-CAM & Streamlit UI

A deep learning-based malaria detection system using ResNet50 and Grad-CAM explainability.

## πŸš€ Features

- βœ… Binary classification of blood smear images (`Infected` / `Uninfected`)
- πŸ” Grad-CAM visualizations to highlight infected regions
- 🌐 Interactive Streamlit web interface
- πŸ“¦ Easy-to-deploy structure

## πŸ› οΈ Built With

- [PyTorch](https://pytorch.org/)
- [Streamlit](https://streamlit.io/)
- [Grad-CAM](https://arxiv.org/abs/1610.02391)
- [ResNet50](https://pytorch.org/vision/stable/models.html)

## πŸ“¦ Dataset

Uses the [Malaria Cell Images Dataset](https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria)

## πŸ“ Folder Structure

Place raw images in:
data/cell_images/
    β”œβ”€β”€ Parasitized/
    └── Uninfected/

## Here's a quick preview of the app in action:

![Malaria Classifier Demo](demo.gif)

## πŸ§ͺ Usage

## πŸ› οΈ Requirements

Install dependencies:

```bash
pip install torch torchvision streamlit opencv-python matplotlib scikit-learn
```