Spaces:
Running
Running
File size: 22,839 Bytes
6277fe0 b560569 575b933 b0464a9 87a87e7 791c130 8add36b f7fc39b 575b933 826a2a1 2e2e19a 8add36b 575b933 2e2e19a 8add36b 2e2e19a 2bd9dad 8add36b 2601f1c 8add36b 5a483f8 8add36b 1fa587a 2e2e19a 8add36b 7aa6c73 2a3b22e 3b4dccb 2a3b22e 2e2e19a 8add36b 1644cc1 77179e2 1644cc1 77179e2 2e2e19a 77179e2 8add36b adb3bbe 2e2e19a 67742c4 a342a6b 6a8e128 8add36b 2e2e19a 6a8e128 2601f1c 67742c4 6277fe0 8add36b adb3bbe 8add36b 7aa6c73 a342a6b d33040c 6277fe0 a342a6b 575b933 8add36b 791c130 8add36b 6277fe0 8add36b 1644cc1 8add36b 1644cc1 8add36b 1644cc1 8add36b 2e2e19a 1644cc1 8add36b 1644cc1 8add36b 2e2e19a 8add36b 2e2e19a 8add36b 2e2e19a 8add36b 2e2e19a 8add36b 1644cc1 8add36b 1644cc1 2e2e19a 1644cc1 8add36b 2e2e19a 8add36b 2e2e19a 8add36b 1644cc1 2e2e19a 8add36b 1644cc1 8add36b 1644cc1 8add36b 1644cc1 8add36b 1644cc1 8add36b 2e2e19a 8add36b 2e2e19a 8add36b 5a483f8 266ae82 adb3bbe 8add36b 2e2e19a a6bc02b 8add36b 1fa587a 8add36b 1fa587a 8add36b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# app.py
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib
import matplotlib.pyplot as plt
import time
from datetime import datetime, timedelta
import numpy as np
from collections import OrderedDict, defaultdict # Added defaultdict
import asyncio
# --- Module Imports ---
from utils.gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
PLOT_ID_TO_FORMULA_KEY_MAP # Keep this if used by AnalyticsTab
)
from services.state_manager import process_and_store_bubble_token
from services.sync_logic import sync_all_linkedin_data_orchestrator
from ui.ui_generators import (
display_main_dashboard,
build_analytics_tab_plot_area, # This will be passed to AnalyticsTab
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON # These will be passed
)
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot # Pass these
from formulas import PLOT_FORMULAS # Keep this if used by AnalyticsTab
# --- EXISTING CHATBOT MODULE IMPORTS ---
from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions # Pass this
from features.chatbot.chatbot_handler import generate_llm_response # Pass this
# --- NEW AGENTIC PIPELINE IMPORTS ---
try:
from run_agentic_pipeline import run_full_analytics_orchestration
from ui.insights_ui_generator import (
format_report_to_markdown,
extract_key_results_for_selection,
format_single_okr_for_display
)
AGENTIC_MODULES_LOADED = True
except ImportError as e:
logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 3 and 4 will be disabled.")
AGENTIC_MODULES_LOADED = False
async def run_full_analytics_orchestration(*args, **kwargs): return None # Placeholder
def format_report_to_markdown(report_string): return "Agentic modules not loaded. Report unavailable." # Placeholder
def extract_key_results_for_selection(okrs_dict): return [] # Placeholder
def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable." # Placeholder
# --- IMPORT THE NEW ANALYTICS TAB MODULE ---
from services.analytics_tab_module import AnalyticsTab # Assuming analytics_tab_module.py is in the services directory
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# API Key Setup
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
if user_provided_api_key:
os.environ["GOOGLE_API_KEY"] = user_provided_api_key
logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.")
else:
logging.error("CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found.")
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
# States for existing analytics tab chatbot - these are passed to AnalyticsTab
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({}) # This will be populated by the analytics module's refresh
# --- STATES FOR AGENTIC PIPELINE ---
orchestration_raw_results_st = gr.State(None) # Stores the full raw output from the agentic pipeline
key_results_for_selection_st = gr.State([]) # Stores the list of dicts for KR selection (label, id, etc.)
selected_key_result_ids_st = gr.State([]) # Stores the unique_kr_ids selected in the CheckboxGroup
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
# --- Instantiate the AnalyticsTab module ---
analytics_icons = {
'bomb': BOMB_ICON, 'explore': EXPLORE_ICON,
'formula': FORMULA_ICON, 'active': ACTIVE_ICON
}
analytics_tab_instance = AnalyticsTab(
token_state=token_state,
chat_histories_st=chat_histories_st,
current_chat_plot_id_st=current_chat_plot_id_st,
plot_data_for_chatbot_st=plot_data_for_chatbot_st,
plot_id_to_formula_map=PLOT_ID_TO_FORMULA_KEY_MAP,
plot_formulas_data=PLOT_FORMULAS,
icons=analytics_icons,
fn_build_plot_area=build_analytics_tab_plot_area,
fn_update_plot_figures=update_analytics_plots_figures,
fn_create_placeholder_plot=create_placeholder_plot,
fn_get_initial_insight=get_initial_insight_prompt_and_suggestions,
fn_generate_llm_response=generate_llm_response
)
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
# --- Use the AnalyticsTab module to create Tab 2 ---
analytics_tab_instance.create_tab_ui()
# --- Tab 3: Agentic Analysis Report ---
with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
gr.Markdown("## 🤖 Comprehensive Analysis Report (AI Generated)")
agentic_pipeline_status_md = gr.Markdown("Stato Pipeline AI (filtro 'Sempre'): In attesa...", visible=True)
gr.Markdown("Questo report è generato da un agente AI con filtro 'Sempre' sui dati disponibili. Rivedi criticamente.")
agentic_report_display_md = gr.Markdown("La pipeline AI si avvierà automaticamente dopo il caricamento iniziale dei dati o dopo una sincronizzazione.")
if not AGENTIC_MODULES_LOADED:
gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
# --- Tab 4: Agentic OKRs & Tasks ---
with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED):
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (filtro 'Sempre')")
gr.Markdown("Basato sull'analisi AI (filtro 'Sempre'), l'agente ha proposto i seguenti OKR e task. Seleziona i Key Results per dettagli.")
if not AGENTIC_MODULES_LOADED:
gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Suggested Key Results (da analisi 'Sempre')")
key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
with gr.Column(scale=3):
gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo l'esecuzione della pipeline AI.")
def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
if not raw_orchestration_results or not AGENTIC_MODULES_LOADED:
return gr.update(value="Nessun dato dalla pipeline AI o moduli non caricati.")
actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs_and_tasks")
if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list):
return gr.update(value="Nessun OKR trovato nei risultati della pipeline.")
okrs_list = actionable_okrs_dict["okrs"]
# Ensure all_krs_for_selection is a list of dicts with expected keys
if not all_krs_for_selection or not isinstance(all_krs_for_selection, list) or \
not all(isinstance(kr, dict) and 'unique_kr_id' in kr and 'okr_index' in kr and 'kr_index' in kr for kr in all_krs_for_selection):
logging.error("all_krs_for_selection is not in the expected format.")
return gr.update(value="Errore interno: formato dati KR non valido.")
kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
selected_krs_by_okr_idx = defaultdict(list)
if selected_kr_unique_ids:
for kr_unique_id in selected_kr_unique_ids:
if kr_unique_id in kr_id_to_indices:
okr_idx, kr_idx = kr_id_to_indices[kr_unique_id]
selected_krs_by_okr_idx[okr_idx].append(kr_idx)
output_md_parts = []
if not okrs_list:
output_md_parts.append("Nessun OKR generato.")
else:
for okr_idx, okr_data in enumerate(okrs_list):
accepted_indices_for_this_okr = selected_krs_by_okr_idx.get(okr_idx)
# If specific KRs are selected, only show OKRs that have at least one of the selected KRs
# OR if no KRs are selected at all, show all OKRs.
if selected_kr_unique_ids: # User has made a selection
if accepted_indices_for_this_okr is not None: # This OKR has some of the selected KRs
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices_for_this_okr, okr_main_index=okr_idx))
else: # No KRs selected, show all OKRs with all their KRs
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
if not output_md_parts and selected_kr_unique_ids:
final_md = "Nessun OKR corrisponde alla selezione corrente o i KR selezionati non hanno task dettagliati."
elif not output_md_parts and not selected_kr_unique_ids: # Should be covered by "Nessun OKR generato."
final_md = "Nessun OKR generato."
else:
final_md = "\n\n---\n\n".join(output_md_parts)
return gr.update(value=final_md)
if AGENTIC_MODULES_LOADED:
key_results_cbg.change(
fn=update_okr_display_on_selection,
inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st],
outputs=[okr_detail_display_md],
api_name="update_okr_display_on_selection_module"
)
async def run_agentic_pipeline_autonomously(current_token_state_val):
logging.info(f"Agentic pipeline check triggered for token_state update. Current token: {'Set' if current_token_state_val.get('token') else 'Not Set'}")
# Initial state before pipeline runs or if skipped
initial_yield = (
gr.update(value="Pipeline AI: In attesa dei dati necessari..."), # agentic_report_display_md
gr.update(choices=[], value=[], interactive=False), # key_results_cbg
gr.update(value="Pipeline AI: In attesa dei dati necessari..."), # okr_detail_display_md
orchestration_raw_results_st.value, # Preserve current raw results
selected_key_result_ids_st.value, # Preserve current selection
key_results_for_selection_st.value, # Preserve current options
"Pipeline AI: In attesa dei dati..." # agentic_pipeline_status_md
)
if not current_token_state_val or not current_token_state_val.get("token"):
logging.info("Agentic pipeline: Token not available in token_state. Skipping.")
yield initial_yield
return
logging.info("Agentic pipeline starting autonomously with 'Sempre' filter.")
# Update status to indicate processing
yield (
gr.update(value="Analisi AI (Sempre) in corso..."),
gr.update(choices=[], value=[], interactive=False), # Keep CBG disabled during run
gr.update(value="Dettagli OKR (Sempre) in corso di generazione..."),
orchestration_raw_results_st.value, # Preserve
selected_key_result_ids_st.value, # Preserve
key_results_for_selection_st.value, # Preserve
"Esecuzione pipeline AI (Sempre)..."
)
if not AGENTIC_MODULES_LOADED:
logging.warning("Agentic modules not loaded. Skipping autonomous pipeline.")
yield (
gr.update(value="Moduli AI non caricati. Report non disponibile."),
gr.update(choices=[], value=[], interactive=False),
gr.update(value="Moduli AI non caricati. OKR non disponibili."),
None, [], [], "Pipeline AI: Moduli non caricati."
)
return
try:
# Parameters for 'Sempre' filter for the agentic pipeline
date_filter_val_agentic = "Sempre"
custom_start_val_agentic = None
custom_end_val_agentic = None
orchestration_output = await run_full_analytics_orchestration(
current_token_state_val,
date_filter_val_agentic,
custom_start_val_agentic,
custom_end_val_agentic
)
agentic_status_text = "Pipeline AI (Sempre) completata."
logging.info(f"Autonomous agentic pipeline finished. Output keys: {orchestration_output.keys() if orchestration_output else 'None'}")
if orchestration_output:
orchestration_results_update = orchestration_output # Store full results in state
report_str = orchestration_output.get('comprehensive_analysis_report', "Nessun report dettagliato fornito.")
agentic_report_md_update = gr.update(value=format_report_to_markdown(report_str))
actionable_okrs = orchestration_output.get('actionable_okrs_and_tasks') # This is the dict containing 'okrs' list
krs_for_ui_selection_list = extract_key_results_for_selection(actionable_okrs) # Expects the dict
krs_for_selection_update = krs_for_ui_selection_list # Update state with list of KR dicts
# Choices for CheckboxGroup: list of (label, value) tuples
kr_choices_for_cbg = [(kr['kr_description'], kr['unique_kr_id']) for kr in krs_for_ui_selection_list]
key_results_cbg_update = gr.update(choices=kr_choices_for_cbg, value=[], interactive=True) # Reset selection
# Display all OKRs by default after pipeline run
all_okrs_md_parts = []
if actionable_okrs and isinstance(actionable_okrs.get("okrs"), list):
for okr_idx, okr_item in enumerate(actionable_okrs["okrs"]):
all_okrs_md_parts.append(format_single_okr_for_display(okr_item, accepted_kr_indices=None, okr_main_index=okr_idx))
if not all_okrs_md_parts:
okr_detail_display_md_update = gr.update(value="Nessun OKR generato o trovato (Sempre).")
else:
okr_detail_display_md_update = gr.update(value="\n\n---\n\n".join(all_okrs_md_parts))
selected_krs_update = [] # Reset selected KRs state
else:
agentic_report_md_update = gr.update(value="Nessun report generato dalla pipeline AI (Sempre).")
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
okr_detail_display_md_update = gr.update(value="Nessun OKR generato o errore nella pipeline AI (Sempre).")
orchestration_results_update = None
selected_krs_update = []
krs_for_selection_update = []
yield (
agentic_report_md_update,
key_results_cbg_update,
okr_detail_display_md_update,
orchestration_results_update, # state
selected_krs_update, # state
krs_for_selection_update, # state
agentic_status_text
)
except Exception as e:
logging.error(f"Error during autonomous agentic pipeline execution: {e}", exc_info=True)
agentic_status_text = f"Errore pipeline AI (Sempre): {str(e)}"
yield (
gr.update(value=f"Errore generazione report AI (Sempre): {str(e)}"),
gr.update(choices=[], value=[], interactive=False),
gr.update(value=f"Errore generazione OKR AI (Sempre): {str(e)}"),
None, [], [], agentic_status_text # Reset states on error
)
# Define the output list for the agentic pipeline callbacks
# Order: Report MD, KR CBG, OKR Detail MD, RawResults State, SelectedKRIDs State, KRList State, Status MD
agentic_pipeline_outputs_list = [
agentic_report_display_md,
key_results_cbg,
okr_detail_display_md,
orchestration_raw_results_st,
selected_key_result_ids_st,
key_results_for_selection_st,
agentic_pipeline_status_md
]
agentic_pipeline_inputs = [token_state] # Input for the autonomous run
# --- Event Handling ---
initial_load_event = org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
initial_load_event.then(
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
inputs=[
token_state,
analytics_tab_instance.date_filter_selector,
analytics_tab_instance.custom_start_date_picker,
analytics_tab_instance.custom_end_date_picker,
chat_histories_st
],
outputs=analytics_tab_instance.graph_refresh_outputs_list,
show_progress="full"
).then(
fn=run_agentic_pipeline_autonomously, # Generator function
inputs=agentic_pipeline_inputs,
outputs=agentic_pipeline_outputs_list,
show_progress="minimal" # Use minimal for generators that yield status
)
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state],
show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn],
show_progress=False
)
sync_event_part2.then(
fn=run_agentic_pipeline_autonomously, # Generator function
inputs=agentic_pipeline_inputs,
outputs=agentic_pipeline_outputs_list,
show_progress="minimal"
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
sync_event_graphs_after_sync = sync_event_part3.then(
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
inputs=[
token_state,
analytics_tab_instance.date_filter_selector,
analytics_tab_instance.custom_start_date_picker,
analytics_tab_instance.custom_end_date_picker,
chat_histories_st
],
outputs=analytics_tab_instance.graph_refresh_outputs_list,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
logging.warning("ATTENZIONE: Una o più variabili d'ambiente Bubble (BUBBLE_APP_NAME, BUBBLE_API_KEY_PRIVATE, BUBBLE_API_ENDPOINT) non sono impostate.")
if not AGENTIC_MODULES_LOADED:
logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 3 and 4 (Agentic Report & OKRs) will be non-functional.")
if not os.environ.get("GEMINI_API_KEY"): # Check GEMINI_API_KEY directly as GOOGLE_API_KEY is derived
logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. Questo è necessario per le funzionalità AI, incluse le tab agentiche e il chatbot dei grafici.")
try:
logging.info(f"Gradio version: {gr.__version__}")
logging.info(f"Pandas version: {pd.__version__}")
logging.info(f"Matplotlib version: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except Exception as e:
logging.warning(f"Could not log library versions: {e}")
app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)
|