Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,21 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
import gradio as gr
|
3 |
import json
|
4 |
import os
|
5 |
import logging
|
6 |
import html
|
|
|
7 |
|
|
|
8 |
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
|
9 |
from analytics_fetch_and_rendering import fetch_and_render_analytics
|
10 |
from mentions_dashboard import generate_mentions_dashboard
|
11 |
from gradio_utils import get_url_user_token
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
from Linkedin_Data_API_Calls import (
|
15 |
fetch_linkedin_posts_core,
|
16 |
fetch_comments,
|
@@ -19,83 +24,125 @@ from Linkedin_Data_API_Calls import (
|
|
19 |
prepare_data_for_bubble
|
20 |
)
|
21 |
|
|
|
|
|
|
|
22 |
def check_token_status(token_state):
|
|
|
23 |
return "β
Token available" if token_state and token_state.get("token") else "β Token not available"
|
24 |
|
25 |
-
|
26 |
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
client_id = os.environ.get("Linkedin_client_id")
|
31 |
if not client_id:
|
32 |
-
|
33 |
new_state["client_id"] = "ENV VAR MISSING"
|
34 |
-
|
35 |
-
|
36 |
-
new_state["client_id"] = client_id
|
37 |
-
if not url_user_token or "not found" in url_user_token or "Could not access" in url_user_token:
|
38 |
-
return check_token_status(new_state), new_state
|
39 |
-
|
40 |
-
print(f"Attempting to fetch token from Bubble with user token: {url_user_token}")
|
41 |
-
parsed = fetch_linkedin_token_from_bubble(url_user_token)
|
42 |
-
|
43 |
-
if isinstance(parsed, dict) and "access_token" in parsed:
|
44 |
-
new_state["token"] = parsed
|
45 |
-
print("β
Token successfully fetched from Bubble.")
|
46 |
else:
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def guarded_fetch_posts(token_state):
|
|
|
|
|
|
|
|
|
52 |
logging.info("Starting guarded_fetch_posts process.")
|
53 |
if not token_state or not token_state.get("token"):
|
54 |
-
logging.error("Access denied. No token available.")
|
55 |
-
return "<p style='color:red; text-align:center;'>β Access denied.
|
56 |
|
57 |
client_id = token_state.get("client_id")
|
58 |
token_dict = token_state.get("token")
|
59 |
-
org_urn = token_state.get('org_urn')
|
60 |
|
61 |
if not org_urn:
|
62 |
-
logging.error("Organization URN (org_urn) not found in token_state.")
|
63 |
return "<p style='color:red; text-align:center;'>β Configuration error: Organization URN missing.</p>"
|
64 |
-
if not client_id:
|
65 |
-
logging.error("Client ID not found in token_state.")
|
66 |
-
return "<p style='color:red; text-align:center;'>β Configuration error: Client ID missing.</p>"
|
67 |
-
|
68 |
|
69 |
try:
|
70 |
-
# Step 1: Fetch core post data (text, summary, category) and their basic stats
|
71 |
logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn}")
|
72 |
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn)
|
73 |
-
# org_name is returned as the third item, captured as _ if not used directly here
|
74 |
|
75 |
if not processed_raw_posts:
|
76 |
logging.info("No posts found to process after step 1.")
|
77 |
-
return "<p style='color:orange; text-align:center;'>βΉοΈ No posts found to process.</p>"
|
78 |
|
79 |
post_urns = [post["id"] for post in processed_raw_posts if post.get("id")]
|
80 |
logging.info(f"Extracted {len(post_urns)} post URNs for further processing.")
|
81 |
|
82 |
-
# Step 2: Fetch comments for these posts
|
83 |
logging.info("Step 2: Fetching comments.")
|
84 |
all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map)
|
85 |
|
86 |
-
# Step 3: Analyze sentiment of the comments
|
87 |
logging.info("Step 3: Analyzing sentiment.")
|
88 |
sentiments_per_post = analyze_sentiment(all_comments_data)
|
89 |
|
90 |
-
# Step 4: Compile detailed post objects
|
91 |
logging.info("Step 4: Compiling detailed posts.")
|
92 |
detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post)
|
93 |
|
94 |
-
# Step 5: Prepare data for Bubble
|
95 |
logging.info("Step 5: Preparing data for Bubble.")
|
96 |
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data)
|
97 |
|
98 |
-
# Step 6: Bulk upload to Bubble
|
99 |
logging.info("Step 6: Uploading data to Bubble.")
|
100 |
bulk_upload_to_bubble(li_posts, "LI_posts")
|
101 |
bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
|
@@ -104,68 +151,94 @@ def guarded_fetch_posts(token_state):
|
|
104 |
logging.info("Successfully fetched and uploaded posts and comments to Bubble.")
|
105 |
return "<p style='color:green; text-align:center;'>β
Posts and comments uploaded to Bubble.</p>"
|
106 |
|
107 |
-
except ValueError as ve:
|
108 |
logging.error(f"ValueError during LinkedIn data processing: {ve}")
|
109 |
return f"<p style='color:red; text-align:center;'>β Error: {html.escape(str(ve))}</p>"
|
110 |
except Exception as e:
|
111 |
-
logging.exception("An unexpected error occurred in guarded_fetch_posts.")
|
112 |
return "<p style='color:red; text-align:center;'>β An unexpected error occurred. Please check logs.</p>"
|
113 |
|
114 |
-
|
115 |
-
|
116 |
def guarded_fetch_dashboard(token_state):
|
|
|
117 |
if not token_state or not token_state.get("token"):
|
118 |
-
return "
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
|
122 |
def guarded_fetch_analytics(token_state):
|
|
|
123 |
if not token_state or not token_state.get("token"):
|
124 |
-
return ("
|
125 |
None, None, None, None, None, None, None)
|
126 |
-
|
127 |
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"))
|
128 |
|
129 |
-
|
130 |
def run_mentions_and_load(token_state):
|
|
|
131 |
if not token_state or not token_state.get("token"):
|
132 |
-
return ("
|
133 |
return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token"))
|
134 |
|
135 |
-
|
136 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
137 |
title="LinkedIn Post Viewer & Analytics") as app:
|
138 |
|
139 |
-
|
|
|
140 |
|
141 |
gr.Markdown("# π LinkedIn Organization Post Viewer & Analytics")
|
142 |
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
|
143 |
|
144 |
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
|
145 |
-
status_box = gr.Textbox(label="Overall Token Status", interactive=False)
|
146 |
-
|
147 |
-
|
148 |
-
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn])
|
149 |
-
|
150 |
-
url_user_token_display.change(
|
151 |
-
fn=process_and_store_bubble_token,
|
152 |
-
inputs=[url_user_token_display, org_urn, token_state],
|
153 |
-
outputs=[status_box, token_state]
|
154 |
-
)
|
155 |
|
156 |
-
|
157 |
-
app.load(fn=
|
158 |
-
gr.Timer(5.0).tick(fn=check_token_status, inputs=[token_state], outputs=status_box)
|
159 |
|
160 |
with gr.Tabs():
|
161 |
-
with gr.TabItem("1οΈβ£ Dashboard"):
|
162 |
-
gr.Markdown("View your organization's recent posts and their engagement statistics."
|
|
|
163 |
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
sync_posts_to_bubble_btn.click(
|
170 |
fn=guarded_fetch_posts,
|
171 |
inputs=[token_state],
|
@@ -205,8 +278,19 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
205 |
inputs=[token_state],
|
206 |
outputs=[mentions_html, mentions_plot]
|
207 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
if not os.environ.get("Linkedin_client_id"):
|
211 |
-
|
|
|
|
|
|
|
212 |
app.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
import os
|
4 |
import logging
|
5 |
import html
|
6 |
+
import pandas as pd
|
7 |
|
8 |
+
# Import functions from your custom modules
|
9 |
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
|
10 |
from analytics_fetch_and_rendering import fetch_and_render_analytics
|
11 |
from mentions_dashboard import generate_mentions_dashboard
|
12 |
from gradio_utils import get_url_user_token
|
13 |
+
# Updated import to include fetch_posts_from_bubble
|
14 |
+
from Bubble_API_Calls import (
|
15 |
+
fetch_linkedin_token_from_bubble,
|
16 |
+
bulk_upload_to_bubble,
|
17 |
+
fetch_posts_from_bubble # Added new function
|
18 |
+
)
|
19 |
from Linkedin_Data_API_Calls import (
|
20 |
fetch_linkedin_posts_core,
|
21 |
fetch_comments,
|
|
|
24 |
prepare_data_for_bubble
|
25 |
)
|
26 |
|
27 |
+
# Configure logging
|
28 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
29 |
+
|
30 |
def check_token_status(token_state):
|
31 |
+
"""Checks the status of the LinkedIn token."""
|
32 |
return "β
Token available" if token_state and token_state.get("token") else "β Token not available"
|
33 |
|
|
|
34 |
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
|
35 |
+
"""
|
36 |
+
Processes the user token from the URL, fetches LinkedIn token from Bubble,
|
37 |
+
fetches initial posts from Bubble, and updates the token state and UI accordingly.
|
38 |
+
"""
|
39 |
+
logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
|
40 |
+
# Initialize or copy existing state, adding bubble_posts_df
|
41 |
+
new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None, "bubble_posts_df": None}
|
42 |
+
new_state.update({"token": None, "org_urn": org_urn, "bubble_posts_df": None}) # Ensure bubble_posts_df is reset/initialized
|
43 |
+
|
44 |
+
# Default button state: invisible and non-interactive
|
45 |
+
button_update = gr.Button(
|
46 |
+
value="π Fetch, Analyze & Store Posts to Bubble",
|
47 |
+
variant="primary",
|
48 |
+
visible=False,
|
49 |
+
interactive=False
|
50 |
+
)
|
51 |
|
52 |
client_id = os.environ.get("Linkedin_client_id")
|
53 |
if not client_id:
|
54 |
+
logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
|
55 |
new_state["client_id"] = "ENV VAR MISSING"
|
56 |
+
# Even if client_id is missing, we might still be able to fetch from Bubble if org_urn is present
|
57 |
+
# and then decide button visibility.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
else:
|
59 |
+
new_state["client_id"] = client_id
|
60 |
+
|
61 |
+
# Attempt to fetch LinkedIn token from Bubble (related to LinkedIn API access)
|
62 |
+
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
|
63 |
+
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
|
64 |
+
parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token)
|
65 |
+
if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token:
|
66 |
+
new_state["token"] = parsed_linkedin_token
|
67 |
+
logging.info("β
LinkedIn Token successfully fetched from Bubble.")
|
68 |
+
else:
|
69 |
+
logging.warning("β Failed to fetch a valid LinkedIn token from Bubble.")
|
70 |
+
else:
|
71 |
+
logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")
|
72 |
+
|
73 |
+
# Fetch posts from Bubble using org_urn, regardless of LinkedIn token status for this specific fetch
|
74 |
+
current_org_urn = new_state.get("org_urn")
|
75 |
+
if current_org_urn:
|
76 |
+
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
|
77 |
+
try:
|
78 |
+
# Assuming fetch_posts_from_bubble returns a Pandas DataFrame or None
|
79 |
+
df_bubble_posts = fetch_posts_from_bubble(current_org_urn)
|
80 |
+
new_state["bubble_posts_df"] = df_bubble_posts
|
81 |
+
|
82 |
+
if df_bubble_posts is not None and not df_bubble_posts.empty:
|
83 |
+
logging.info(f"β
Successfully fetched {len(df_bubble_posts)} posts from Bubble. Sync button will be enabled.")
|
84 |
+
button_update = gr.Button(
|
85 |
+
value="π Fetch, Analyze & Store Posts to Bubble",
|
86 |
+
variant="primary",
|
87 |
+
visible=True,
|
88 |
+
interactive=True
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
logging.info("βΉοΈ No posts found in Bubble for this organization or DataFrame is empty. Sync button will remain hidden.")
|
92 |
+
except Exception as e:
|
93 |
+
logging.error(f"β Error fetching posts from Bubble: {e}")
|
94 |
+
# Keep button hidden on error
|
95 |
+
else:
|
96 |
+
logging.warning("Org URN not available in state. Cannot fetch posts from Bubble.")
|
97 |
+
|
98 |
+
token_status_message = check_token_status(new_state)
|
99 |
+
logging.info(f"Token processing complete. Status: {token_status_message}. Button visible: {button_update.visible}")
|
100 |
+
return token_status_message, new_state, button_update
|
101 |
|
102 |
def guarded_fetch_posts(token_state):
|
103 |
+
"""
|
104 |
+
Fetches LinkedIn posts, analyzes them, and uploads to Bubble.
|
105 |
+
This function is guarded by token availability.
|
106 |
+
"""
|
107 |
logging.info("Starting guarded_fetch_posts process.")
|
108 |
if not token_state or not token_state.get("token"):
|
109 |
+
logging.error("Access denied for guarded_fetch_posts. No LinkedIn token available.")
|
110 |
+
return "<p style='color:red; text-align:center;'>β Access denied. LinkedIn token not available.</p>"
|
111 |
|
112 |
client_id = token_state.get("client_id")
|
113 |
token_dict = token_state.get("token")
|
114 |
+
org_urn = token_state.get('org_urn')
|
115 |
|
116 |
if not org_urn:
|
117 |
+
logging.error("Organization URN (org_urn) not found in token_state for guarded_fetch_posts.")
|
118 |
return "<p style='color:red; text-align:center;'>β Configuration error: Organization URN missing.</p>"
|
119 |
+
if not client_id or client_id == "ENV VAR MISSING":
|
120 |
+
logging.error("Client ID not found or missing in token_state for guarded_fetch_posts.")
|
121 |
+
return "<p style='color:red; text-align:center;'>β Configuration error: LinkedIn Client ID missing.</p>"
|
|
|
122 |
|
123 |
try:
|
|
|
124 |
logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn}")
|
125 |
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn)
|
|
|
126 |
|
127 |
if not processed_raw_posts:
|
128 |
logging.info("No posts found to process after step 1.")
|
129 |
+
return "<p style='color:orange; text-align:center;'>βΉοΈ No new LinkedIn posts found to process.</p>"
|
130 |
|
131 |
post_urns = [post["id"] for post in processed_raw_posts if post.get("id")]
|
132 |
logging.info(f"Extracted {len(post_urns)} post URNs for further processing.")
|
133 |
|
|
|
134 |
logging.info("Step 2: Fetching comments.")
|
135 |
all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map)
|
136 |
|
|
|
137 |
logging.info("Step 3: Analyzing sentiment.")
|
138 |
sentiments_per_post = analyze_sentiment(all_comments_data)
|
139 |
|
|
|
140 |
logging.info("Step 4: Compiling detailed posts.")
|
141 |
detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post)
|
142 |
|
|
|
143 |
logging.info("Step 5: Preparing data for Bubble.")
|
144 |
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data)
|
145 |
|
|
|
146 |
logging.info("Step 6: Uploading data to Bubble.")
|
147 |
bulk_upload_to_bubble(li_posts, "LI_posts")
|
148 |
bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
|
|
|
151 |
logging.info("Successfully fetched and uploaded posts and comments to Bubble.")
|
152 |
return "<p style='color:green; text-align:center;'>β
Posts and comments uploaded to Bubble.</p>"
|
153 |
|
154 |
+
except ValueError as ve:
|
155 |
logging.error(f"ValueError during LinkedIn data processing: {ve}")
|
156 |
return f"<p style='color:red; text-align:center;'>β Error: {html.escape(str(ve))}</p>"
|
157 |
except Exception as e:
|
158 |
+
logging.exception("An unexpected error occurred in guarded_fetch_posts.")
|
159 |
return "<p style='color:red; text-align:center;'>β An unexpected error occurred. Please check logs.</p>"
|
160 |
|
|
|
|
|
161 |
def guarded_fetch_dashboard(token_state):
|
162 |
+
"""Fetches and renders the dashboard if token is available."""
|
163 |
if not token_state or not token_state.get("token"):
|
164 |
+
return "β Access denied. No token available for dashboard."
|
165 |
+
# This function is not used in the current UI structure for the first tab's main content
|
166 |
+
# but kept for potential future use or if it's called elsewhere.
|
167 |
+
# The first tab's content is now primarily the button and its output.
|
168 |
+
# If you intend to display a dashboard here *after* fetching, this would need integration.
|
169 |
+
# For now, returning a placeholder or status.
|
170 |
+
# return fetch_and_render_dashboard(token_state.get("client_id"), token_state.get("token"))
|
171 |
+
return "<p style='text-align: center; color: #555;'>Dashboard content would load here if implemented.</p>"
|
172 |
|
173 |
|
174 |
def guarded_fetch_analytics(token_state):
|
175 |
+
"""Fetches and renders analytics if token is available."""
|
176 |
if not token_state or not token_state.get("token"):
|
177 |
+
return ("β Access denied. No token available for analytics.",
|
178 |
None, None, None, None, None, None, None)
|
|
|
179 |
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"))
|
180 |
|
|
|
181 |
def run_mentions_and_load(token_state):
|
182 |
+
"""Generates mentions dashboard if token is available."""
|
183 |
if not token_state or not token_state.get("token"):
|
184 |
+
return ("β Access denied. No token available for mentions.", None)
|
185 |
return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token"))
|
186 |
|
187 |
+
# --- Gradio UI Blocks ---
|
188 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
189 |
title="LinkedIn Post Viewer & Analytics") as app:
|
190 |
|
191 |
+
# Initialize state with the new field for Bubble DataFrame
|
192 |
+
token_state = gr.State(value={"token": None, "client_id": None, "org_urn": None, "bubble_posts_df": None})
|
193 |
|
194 |
gr.Markdown("# π LinkedIn Organization Post Viewer & Analytics")
|
195 |
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
|
196 |
|
197 |
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
|
198 |
+
status_box = gr.Textbox(label="Overall Token Status", interactive=False, value="Initializing...") # Initial status
|
199 |
+
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False) # Renamed for clarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
# Load user token and org URN from URL parameters
|
202 |
+
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display])
|
|
|
203 |
|
204 |
with gr.Tabs():
|
205 |
+
with gr.TabItem("1οΈβ£ Dashboard & Sync"):
|
206 |
+
gr.Markdown("View your organization's recent posts and their engagement statistics. "
|
207 |
+
"Fetch new posts from LinkedIn, analyze, and store them in Bubble.")
|
208 |
|
209 |
+
# Button is initially not visible and not interactive.
|
210 |
+
# Its state will be updated by process_and_store_bubble_token
|
211 |
+
sync_posts_to_bubble_btn = gr.Button(
|
212 |
+
"π Fetch, Analyze & Store Posts to Bubble",
|
213 |
+
variant="primary",
|
214 |
+
visible=False,
|
215 |
+
interactive=False
|
216 |
+
)
|
217 |
|
218 |
+
dashboard_html_output = gr.HTML(
|
219 |
+
"<p style='text-align: center; color: #555;'>System initializing... Status and actions will appear shortly. "
|
220 |
+
"If data is found in Bubble, the 'Fetch, Analyze & Store' button will become active.</p>"
|
221 |
+
)
|
222 |
+
|
223 |
+
# Event: When URL token or org URN is loaded/changed, process it.
|
224 |
+
# This will update token_state and the sync_posts_to_bubble_btn.
|
225 |
+
# Using org_urn_display.change as the primary trigger after app.load completes.
|
226 |
+
# If get_url_user_token is very fast, app.load might be better, but .change is robust.
|
227 |
+
org_urn_display.change(
|
228 |
+
fn=process_and_store_bubble_token,
|
229 |
+
inputs=[url_user_token_display, org_urn_display, token_state],
|
230 |
+
outputs=[status_box, token_state, sync_posts_to_bubble_btn] # Added button to outputs
|
231 |
+
)
|
232 |
+
# Also trigger if url_user_token_display changes, in case org_urn loads first
|
233 |
+
# but token processing depends on url_user_token_display.
|
234 |
+
# This creates a dependency: if one changes, the function runs with current values of both.
|
235 |
+
url_user_token_display.change(
|
236 |
+
fn=process_and_store_bubble_token,
|
237 |
+
inputs=[url_user_token_display, org_urn_display, token_state],
|
238 |
+
outputs=[status_box, token_state, sync_posts_to_bubble_btn]
|
239 |
+
)
|
240 |
+
|
241 |
+
# Click handler for the sync button
|
242 |
sync_posts_to_bubble_btn.click(
|
243 |
fn=guarded_fetch_posts,
|
244 |
inputs=[token_state],
|
|
|
278 |
inputs=[token_state],
|
279 |
outputs=[mentions_html, mentions_plot]
|
280 |
)
|
281 |
+
|
282 |
+
# Initial check of token status on app load (primarily for the status_box)
|
283 |
+
# The button visibility is handled by process_and_store_bubble_token
|
284 |
+
app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
|
285 |
+
# Timer to periodically update the token status display (optional, but good for UX)
|
286 |
+
gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
|
287 |
+
|
288 |
|
289 |
if __name__ == "__main__":
|
290 |
if not os.environ.get("Linkedin_client_id"):
|
291 |
+
logging.warning("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly for LinkedIn API calls.")
|
292 |
+
# Ensure the app launches.
|
293 |
+
# For testing, you might want share=False or specific server_name/port.
|
294 |
+
# share=True is useful for public sharing via Gradio link.
|
295 |
app.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
296 |
+
# app.launch(share=True) # Simpler launch for testing if specific port/host not needed
|