GuglielmoTor commited on
Commit
1fa587a
·
verified ·
1 Parent(s): e452864

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +112 -489
app.py CHANGED
@@ -5,52 +5,30 @@ import os
5
  import logging
6
  import matplotlib
7
  matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
8
- import matplotlib.pyplot as plt
9
- import time # For profiling if needed
10
- from datetime import datetime, timedelta # Added timedelta
11
- import numpy as np
12
- from collections import OrderedDict, defaultdict # To maintain section order and for OKR processing
13
- import asyncio # For async operations
14
 
15
  # --- Module Imports ---
16
  from utils.gradio_utils import get_url_user_token
17
- # Functions from newly created/refactored modules
18
  from config import (
19
  LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
20
- BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
21
- PLOT_ID_TO_FORMULA_KEY_MAP)
22
  from services.state_manager import process_and_store_bubble_token
23
  from services.sync_logic import sync_all_linkedin_data_orchestrator
24
- from ui.ui_generators import (
25
- display_main_dashboard,
26
- build_analytics_tab_plot_area, # EXPECTED TO RETURN: plot_ui_objects, section_titles_map
27
- BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
28
- )
29
- from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
30
- from formulas import PLOT_FORMULAS
31
 
32
- # --- EXISTING CHATBOT MODULE IMPORTS ---
33
- from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT
34
- from features.chatbot.chatbot_handler import generate_llm_response
35
- # --- END EXISTING CHATBOT MODULE IMPORTS ---
36
 
37
- # --- NEW AGENTIC PIPELINE IMPORTS ---
38
- try:
39
- from run_agentic_pipeline import run_full_analytics_orchestration
40
- from ui.insights_ui_generator import (
41
- format_report_to_markdown,
42
- extract_key_results_for_selection,
43
- format_single_okr_for_display
44
- )
45
- AGENTIC_MODULES_LOADED = True
46
- except ImportError as e:
47
- logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 3 and 4 (formerly 5 and 6) will be disabled.")
48
- AGENTIC_MODULES_LOADED = False
49
- # Define placeholder functions if modules are not loaded to avoid NameErrors
50
- async def run_full_analytics_orchestration(*args, **kwargs): return None
51
- def format_report_to_markdown(report_string): return "Agentic modules not loaded. Report unavailable."
52
- def extract_key_results_for_selection(okrs_dict): return []
53
- def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable."
54
 
55
  # Configure logging
56
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
@@ -58,532 +36,177 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
58
  # 1. Set Vertex AI usage preference (if applicable)
59
  os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
60
 
61
- # 2. Get your API key from your chosen environment variable name
62
  user_provided_api_key = os.environ.get("GEMINI_API_KEY")
63
-
64
  if user_provided_api_key:
65
  os.environ["GOOGLE_API_KEY"] = user_provided_api_key
66
  logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.")
67
  else:
68
- logging.error(f"CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found. The application may not function correctly.")
69
 
70
 
71
  # --- Gradio UI Blocks ---
72
  with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
73
- title="LinkedIn Organization Dashboard") as app:
 
 
74
  token_state = gr.State(value={
75
  "token": None, "client_id": None, "org_urn": None,
76
  "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
77
- "bubble_mentions_df": pd.DataFrame(), # Data still in state, but not used by UI
78
- "bubble_follower_stats_df": pd.DataFrame(), # Data still in state, but not used by UI
79
  "fetch_count_for_api": 0, "url_user_token_temp_storage": None,
80
  "config_date_col_posts": "published_at", "config_date_col_mentions": "date",
81
  "config_date_col_followers": "date", "config_media_type_col": "media_type",
82
  "config_eb_labels_col": "li_eb_label"
83
  })
84
 
85
- # States for existing analytics tab chatbot
86
  chat_histories_st = gr.State({})
87
  current_chat_plot_id_st = gr.State(None)
88
- plot_data_for_chatbot_st = gr.State({})
 
 
89
 
90
- # --- NEW STATES FOR AGENTIC PIPELINE ---
91
  orchestration_raw_results_st = gr.State(None)
92
- key_results_for_selection_st = gr.State([])
93
- selected_key_result_ids_st = gr.State([])
94
-
95
 
 
96
  gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
97
  url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
98
  status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
99
  org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
100
 
 
101
  app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
102
 
103
- def initial_load_sequence(url_token, org_urn_val, current_state):
104
- status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
105
- dashboard_content = display_main_dashboard(new_state)
106
- return status_msg, new_state, btn_update, dashboard_content
107
-
108
  with gr.Tabs() as tabs:
 
109
  with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
110
  gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
111
  sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
112
  sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
113
  dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
114
 
115
- with gr.TabItem("2️⃣ Analisi Grafici", id="tab_analytics"): # Renamed for clarity
116
- gr.Markdown("## 📈 Analisi Performance LinkedIn")
117
- gr.Markdown("Seleziona un intervallo di date per i grafici. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
118
- analytics_status_md = gr.Markdown("Stato analisi grafici...")
119
-
120
- with gr.Row():
121
- date_filter_selector = gr.Radio(
122
- ["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
123
- label="Seleziona Intervallo Date per Grafici", value="Sempre", scale=3
124
- )
125
- with gr.Column(scale=2):
126
- custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
127
- custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")
128
-
129
- apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Grafici", variant="primary")
130
-
131
- def toggle_custom_date_pickers(selection):
132
- is_custom = selection == "Intervallo Personalizzato"
133
- return gr.update(visible=is_custom), gr.update(visible=is_custom)
134
-
135
- date_filter_selector.change(
136
- fn=toggle_custom_date_pickers,
137
- inputs=[date_filter_selector],
138
- outputs=[custom_start_date_picker, custom_end_date_picker]
139
  )
140
-
141
- plot_configs = [
142
- {"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
143
- {"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
144
- {"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
145
- {"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
146
- {"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
147
- {"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
148
- {"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
149
- {"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
150
- {"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
151
- {"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
152
- {"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
153
- {"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
154
- {"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
155
- {"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
156
- {"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
157
- {"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
158
- {"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
159
- {"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"}, # This plot might need data from the removed mentions tab. Consider if this plot should also be removed or if its data source is independent.
160
- {"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"} # Same as above.
161
- ]
162
- # IMPORTANT: Review if 'mention_analysis_volume' and 'mention_analysis_sentiment' plots
163
- # can still be generated without the dedicated mentions data processing.
164
- # If not, they should also be removed from plot_configs.
165
- # For now, I am assuming they might draw from a general data pool in token_state.
166
-
167
- assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi. (If mentions plots were removed, adjust this number)"
168
-
169
- unique_ordered_sections = list(OrderedDict.fromkeys(pc["section"] for pc in plot_configs))
170
- num_unique_sections = len(unique_ordered_sections)
171
-
172
- active_panel_action_state = gr.State(None)
173
- explored_plot_id_state = gr.State(None)
174
-
175
- plot_ui_objects = {}
176
- section_titles_map = {}
177
-
178
- with gr.Row(equal_height=False):
179
- with gr.Column(scale=8) as plots_area_col:
180
- ui_elements_tuple = build_analytics_tab_plot_area(plot_configs)
181
- if isinstance(ui_elements_tuple, tuple) and len(ui_elements_tuple) == 2:
182
- plot_ui_objects, section_titles_map = ui_elements_tuple
183
- if not all(sec_name in section_titles_map for sec_name in unique_ordered_sections):
184
- logging.error("section_titles_map from build_analytics_tab_plot_area is incomplete.")
185
- for sec_name in unique_ordered_sections:
186
- if sec_name not in section_titles_map:
187
- section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
188
- else:
189
- logging.error("build_analytics_tab_plot_area did not return a tuple of (plot_ui_objects, section_titles_map).")
190
- plot_ui_objects = ui_elements_tuple if isinstance(ui_elements_tuple, dict) else {}
191
- for sec_name in unique_ordered_sections:
192
- section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
193
-
194
-
195
- with gr.Column(scale=4, visible=False) as global_actions_column_ui:
196
- gr.Markdown("### 💡 Azioni Contestuali Grafico")
197
- insights_chatbot_ui = gr.Chatbot(
198
- label="Chat Insights", type="messages", height=450,
199
- bubble_full_width=False, visible=False, show_label=False,
200
- placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
201
- )
202
- insights_chat_input_ui = gr.Textbox(
203
- label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
204
- lines=2, visible=False, show_label=False
205
- )
206
- with gr.Row(visible=False) as insights_suggestions_row_ui:
207
- insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
208
- insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
209
- insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)
210
-
211
- formula_display_markdown_ui = gr.Markdown(
212
- "I dettagli sulla formula/metodologia appariranno qui.", visible=False
213
- )
214
- formula_close_hint_md = gr.Markdown(
215
- "<p style='font-size:0.9em; text-align:center; margin-top:10px;'><em>Click the active ƒ button on the plot again to close this panel.</em></p>",
216
- visible=False
217
- )
218
-
219
- async def handle_panel_action(
220
- plot_id_clicked: str, action_type: str, current_active_action_from_state: dict,
221
- current_chat_histories: dict, current_chat_plot_id: str,
222
- current_plot_data_for_chatbot: dict, current_explored_plot_id: str
223
- ):
224
- logging.info(f"Panel Action: '{action_type}' for plot '{plot_id_clicked}'. Active: {current_active_action_from_state}, Explored: {current_explored_plot_id}")
225
- clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
226
- if not clicked_plot_config:
227
- logging.error(f"Config not found for plot_id {plot_id_clicked}")
228
- num_plots = len(plot_configs)
229
- error_list_len = 15 + (4 * num_plots) + num_unique_sections
230
- error_list = [gr.update()] * error_list_len
231
- error_list[11] = current_active_action_from_state; error_list[12] = current_chat_plot_id
232
- error_list[13] = current_chat_histories; error_list[14] = current_explored_plot_id
233
- return error_list
234
- clicked_plot_label = clicked_plot_config["label"]; clicked_plot_section = clicked_plot_config["section"]
235
- hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
236
- is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
237
- action_col_visible_update = gr.update(visible=False)
238
- insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
239
- formula_display_visible_update = gr.update(visible=False); formula_close_hint_visible_update = gr.update(visible=False)
240
- chatbot_content_update, s1_upd, s2_upd, s3_upd, formula_content_update = gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
241
- new_active_action_state_to_set, new_current_chat_plot_id = None, current_chat_plot_id
242
- updated_chat_histories, new_explored_plot_id_to_set = current_chat_histories, current_explored_plot_id
243
- generated_panel_vis_updates = []; generated_bomb_btn_updates = []; generated_formula_btn_updates = []; generated_explore_btn_updates = []
244
- section_title_vis_updates = [gr.update()] * num_unique_sections
245
- if is_toggling_off:
246
- new_active_action_state_to_set = None; action_col_visible_update = gr.update(visible=False)
247
- logging.info(f"Toggling OFF panel {action_type} for {plot_id_clicked}.")
248
- for _ in plot_configs: generated_bomb_btn_updates.append(gr.update(value=BOMB_ICON)); generated_formula_btn_updates.append(gr.update(value=FORMULA_ICON))
249
- if current_explored_plot_id:
250
- explored_cfg = next((p for p in plot_configs if p["id"] == current_explored_plot_id), None)
251
- explored_sec = explored_cfg["section"] if explored_cfg else None
252
- for i, sec_name in enumerate(unique_ordered_sections): section_title_vis_updates[i] = gr.update(visible=(sec_name == explored_sec))
253
- for cfg in plot_configs: is_exp = (cfg["id"] == current_explored_plot_id); generated_panel_vis_updates.append(gr.update(visible=is_exp)); generated_explore_btn_updates.append(gr.update(value=ACTIVE_ICON if is_exp else EXPLORE_ICON))
254
- else:
255
- for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
256
- for _ in plot_configs: generated_panel_vis_updates.append(gr.update(visible=True)); generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
257
- if action_type == "insights": new_current_chat_plot_id = None
258
- else:
259
- new_active_action_state_to_set = hypothetical_new_active_state; action_col_visible_update = gr.update(visible=True)
260
- new_explored_plot_id_to_set = None
261
- logging.info(f"Toggling ON panel {action_type} for {plot_id_clicked}. Cancelling explore view if any.")
262
- for i, sec_name in enumerate(unique_ordered_sections): section_title_vis_updates[i] = gr.update(visible=(sec_name == clicked_plot_section))
263
- for cfg in plot_configs: generated_panel_vis_updates.append(gr.update(visible=(cfg["id"] == plot_id_clicked))); generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
264
- for cfg_btn in plot_configs:
265
- is_act_ins = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "insights"}
266
- is_act_for = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "formula"}
267
- generated_bomb_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_ins else BOMB_ICON)); generated_formula_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_for else FORMULA_ICON))
268
- if action_type == "insights":
269
- insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
270
- new_current_chat_plot_id = plot_id_clicked
271
- history = current_chat_histories.get(plot_id_clicked, [])
272
- summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"No summary for '{clicked_plot_label}'.")
273
- if not history:
274
- prompt, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
275
- llm_hist = [{"role": "user", "content": prompt}]
276
- resp = await generate_llm_response(prompt, plot_id_clicked, clicked_plot_label, llm_hist, summary)
277
- history = [{"role": "assistant", "content": resp}]; updated_chat_histories = {**current_chat_histories, plot_id_clicked: history}
278
- else: _, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
279
- chatbot_content_update = gr.update(value=history)
280
- s1_upd,s2_upd,s3_upd = gr.update(value=sugg[0] if sugg else "N/A"),gr.update(value=sugg[1] if len(sugg)>1 else "N/A"),gr.update(value=sugg[2] if len(sugg)>2 else "N/A")
281
- elif action_type == "formula":
282
- formula_display_visible_update = gr.update(visible=True); formula_close_hint_visible_update = gr.update(visible=True)
283
- f_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
284
- f_text = f"**Formula/Methodology for: {clicked_plot_label}** (ID: `{plot_id_clicked}`)\n\n"
285
- if f_key and f_key in PLOT_FORMULAS: f_data = PLOT_FORMULAS[f_key]; f_text += f"### {f_data['title']}\n\n{f_data['description']}\n\n**Calculation:**\n" + "\n".join([f"- {s}" for s in f_data['calculation_steps']])
286
- else: f_text += "(No detailed formula information found.)"
287
- formula_content_update = gr.update(value=f_text); new_current_chat_plot_id = None
288
- final_updates = [action_col_visible_update, insights_chatbot_visible_update, chatbot_content_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update, s1_upd, s2_upd, s3_upd, formula_display_visible_update, formula_content_update, formula_close_hint_visible_update, new_active_action_state_to_set, new_current_chat_plot_id, updated_chat_histories, new_explored_plot_id_to_set]
289
- final_updates.extend(generated_panel_vis_updates); final_updates.extend(generated_bomb_btn_updates); final_updates.extend(generated_formula_btn_updates); final_updates.extend(generated_explore_btn_updates); final_updates.extend(section_title_vis_updates)
290
- logging.debug(f"handle_panel_action returning {len(final_updates)} updates. Expected {15 + 4*len(plot_configs) + num_unique_sections}.")
291
- return final_updates
292
-
293
- async def handle_chat_message_submission(user_message: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict ):
294
- if not current_plot_id or not user_message.strip():
295
- current_history_for_plot = chat_histories.get(current_plot_id, [])
296
- if not isinstance(current_history_for_plot, list): current_history_for_plot = []
297
- yield current_history_for_plot, gr.update(value=""), chat_histories; return
298
- cfg = next((p for p in plot_configs if p["id"] == current_plot_id), None)
299
- lbl = cfg["label"] if cfg else "Selected Plot"
300
- summary = current_plot_data_for_chatbot.get(current_plot_id, f"No summary for '{lbl}'.")
301
- hist_for_plot = chat_histories.get(current_plot_id, [])
302
- if not isinstance(hist_for_plot, list): hist_for_plot = []
303
- hist = hist_for_plot.copy() + [{"role": "user", "content": user_message}]
304
- yield hist, gr.update(value=""), chat_histories
305
- resp = await generate_llm_response(user_message, current_plot_id, lbl, hist, summary)
306
- hist.append({"role": "assistant", "content": resp})
307
- updated_chat_histories = {**chat_histories, current_plot_id: hist}
308
- yield hist, "", updated_chat_histories
309
-
310
- async def handle_suggested_question_click(suggestion_text: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict):
311
- if not current_plot_id or not suggestion_text.strip() or suggestion_text == "N/A":
312
- current_history_for_plot = chat_histories.get(current_plot_id, [])
313
- if not isinstance(current_history_for_plot, list): current_history_for_plot = []
314
- yield current_history_for_plot, gr.update(value=""), chat_histories; return
315
- async for update_chunk in handle_chat_message_submission(suggestion_text, current_plot_id, chat_histories, current_plot_data_for_chatbot):
316
- yield update_chunk
317
-
318
- def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state, current_active_panel_action_state):
319
- logging.info(f"Explore Click: Plot '{plot_id_clicked}'. Current Explored: {current_explored_plot_id_from_state}. Active Panel: {current_active_panel_action_state}")
320
- num_plots = len(plot_configs)
321
- if not plot_ui_objects:
322
- logging.error("plot_ui_objects not populated for handle_explore_click.")
323
- error_list_len = 4 + (4 * num_plots) + num_unique_sections; error_list = [gr.update()] * error_list_len
324
- error_list[0] = current_explored_plot_id_from_state; error_list[2] = current_active_panel_action_state
325
- return error_list
326
- new_explored_id_to_set = None
327
- is_toggling_off_explore = (plot_id_clicked == current_explored_plot_id_from_state)
328
- action_col_upd = gr.update(); new_active_panel_state_upd = current_active_panel_action_state; formula_hint_upd = gr.update(visible=False)
329
- panel_vis_updates = []; explore_btns_updates = []; bomb_btns_updates = []; formula_btns_updates = []
330
- section_title_vis_updates = [gr.update()] * num_unique_sections
331
- clicked_cfg = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
332
- sec_of_clicked = clicked_cfg["section"] if clicked_cfg else None
333
- if is_toggling_off_explore:
334
- new_explored_id_to_set = None
335
- logging.info(f"Stopping explore for {plot_id_clicked}. All plots/sections to be visible.")
336
- for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
337
- for _ in plot_configs: panel_vis_updates.append(gr.update(visible=True)); explore_btns_updates.append(gr.update(value=EXPLORE_ICON)); bomb_btns_updates.append(gr.update()); formula_btns_updates.append(gr.update())
338
- else:
339
- new_explored_id_to_set = plot_id_clicked
340
- logging.info(f"Exploring {plot_id_clicked}. Hiding other plots/sections.")
341
- for i, sec_name in enumerate(unique_ordered_sections): section_title_vis_updates[i] = gr.update(visible=(sec_name == sec_of_clicked))
342
- for cfg in plot_configs: is_target = (cfg["id"] == new_explored_id_to_set); panel_vis_updates.append(gr.update(visible=is_target)); explore_btns_updates.append(gr.update(value=ACTIVE_ICON if is_target else EXPLORE_ICON))
343
- if current_active_panel_action_state:
344
- logging.info("Closing active insight/formula panel due to explore click.")
345
- action_col_upd = gr.update(visible=False); new_active_panel_state_upd = None; formula_hint_upd = gr.update(visible=False)
346
- bomb_btns_updates = [gr.update(value=BOMB_ICON) for _ in plot_configs]; formula_btns_updates = [gr.update(value=FORMULA_ICON) for _ in plot_configs]
347
- else: bomb_btns_updates = [gr.update() for _ in plot_configs]; formula_btns_updates = [gr.update() for _ in plot_configs]
348
- final_explore_updates = [new_explored_id_to_set, action_col_upd, new_active_panel_state_upd, formula_hint_upd]
349
- final_explore_updates.extend(panel_vis_updates); final_explore_updates.extend(explore_btns_updates); final_explore_updates.extend(bomb_btns_updates); final_explore_updates.extend(formula_btns_updates); final_explore_updates.extend(section_title_vis_updates)
350
- logging.debug(f"handle_explore_click returning {len(final_explore_updates)} updates. Expected {4 + 4*len(plot_configs) + num_unique_sections}.")
351
- return final_explore_updates
352
-
353
- _base_action_panel_ui_outputs = [global_actions_column_ui, insights_chatbot_ui, insights_chatbot_ui, insights_chat_input_ui, insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn, formula_display_markdown_ui, formula_display_markdown_ui, formula_close_hint_md]
354
- _action_panel_state_outputs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, explored_plot_id_state]
355
- action_panel_outputs_list = _base_action_panel_ui_outputs + _action_panel_state_outputs
356
- action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs]); action_panel_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
357
- _explore_base_outputs = [explored_plot_id_state, global_actions_column_ui, active_panel_action_state, formula_close_hint_md]
358
- explore_outputs_list = _explore_base_outputs
359
- explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs]); explore_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
360
- action_click_inputs = [active_panel_action_state, chat_histories_st, current_chat_plot_id_st, plot_data_for_chatbot_st, explored_plot_id_state]
361
- explore_click_inputs = [explored_plot_id_state, active_panel_action_state]
362
- def create_panel_action_handler(p_id, action_type_str):
363
- async def _handler(curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id): return await handle_panel_action(p_id, action_type_str, curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id)
364
- return _handler
365
- for config_item in plot_configs:
366
- plot_id = config_item["id"]
367
- if plot_id in plot_ui_objects:
368
- ui_obj = plot_ui_objects[plot_id]
369
- if ui_obj.get("bomb_button"): ui_obj["bomb_button"].click(fn=create_panel_action_handler(plot_id, "insights"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_insights_{plot_id}")
370
- if ui_obj.get("formula_button"): ui_obj["formula_button"].click(fn=create_panel_action_handler(plot_id, "formula"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_formula_{plot_id}")
371
- if ui_obj.get("explore_button"): ui_obj["explore_button"].click(fn=lambda current_explored_val, current_active_panel_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val, current_active_panel_val), inputs=explore_click_inputs, outputs=explore_outputs_list, api_name=f"action_explore_{plot_id}")
372
- else: logging.warning(f"UI object for plot_id '{plot_id}' not found for click handlers.")
373
- chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
374
- chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
375
- insights_chat_input_ui.submit(fn=handle_chat_message_submission, inputs=chat_submission_inputs, outputs=chat_submission_outputs, api_name="submit_chat_message")
376
- suggestion_click_inputs_base = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
377
- insights_suggestion_1_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_1_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_1")
378
- insights_suggestion_2_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_2")
379
- insights_suggestion_3_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_3")
380
-
381
- # Tab 3 (Menzioni) and Tab 4 (Statistiche Follower) are removed.
382
-
383
- with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED): # Renumbered from 5
384
- gr.Markdown("## 🤖 Comprehensive Analysis Report (AI Generated)")
385
- agentic_pipeline_status_md = gr.Markdown("Stato Pipeline AI (filtro 'Sempre'): In attesa...", visible=True)
386
- gr.Markdown("Questo report è generato da un agente AI con filtro 'Sempre' sui dati disponibili. Rivedi criticamente.")
387
- agentic_report_display_md = gr.Markdown("La pipeline AI si avvierà automaticamente dopo il caricamento iniziale dei dati o dopo una sincronizzazione.")
388
- if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
389
-
390
- with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED): # Renumbered from 6
391
- gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (filtro 'Sempre')")
392
- gr.Markdown("Basato sull'analisi AI (filtro 'Sempre'), l'agente ha proposto i seguenti OKR e task. Seleziona i Key Results per dettagli.")
393
- if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
394
- with gr.Row():
395
- with gr.Column(scale=1):
396
- gr.Markdown("### Suggested Key Results (da analisi 'Sempre')")
397
- key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
398
- with gr.Column(scale=3):
399
- gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
400
- okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo l'esecuzione della pipeline AI.")
401
- def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
402
- if not raw_orchestration_results or not AGENTIC_MODULES_LOADED: return gr.update(value="Nessun dato dalla pipeline AI o moduli non caricati.")
403
- actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs_and_tasks")
404
- if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list): return gr.update(value="Nessun OKR trovato nei risultati della pipeline.")
405
- okrs_list = actionable_okrs_dict["okrs"]
406
- kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
407
- selected_krs_by_okr_idx = defaultdict(list)
408
- if selected_kr_unique_ids:
409
- for kr_unique_id in selected_kr_unique_ids:
410
- if kr_unique_id in kr_id_to_indices: okr_idx, kr_idx = kr_id_to_indices[kr_unique_id]; selected_krs_by_okr_idx[okr_idx].append(kr_idx)
411
- output_md_parts = []
412
- if not okrs_list: output_md_parts.append("Nessun OKR generato.")
413
- else:
414
- for okr_idx, okr_data in enumerate(okrs_list):
415
- accepted_indices_for_this_okr = selected_krs_by_okr_idx.get(okr_idx)
416
- if selected_kr_unique_ids:
417
- if accepted_indices_for_this_okr is not None: output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices_for_this_okr, okr_main_index=okr_idx))
418
- else: output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
419
- if not output_md_parts and selected_kr_unique_ids: final_md = "Nessun OKR corrisponde alla selezione corrente o i KR selezionati non hanno task dettagliati."
420
- elif not output_md_parts and not selected_kr_unique_ids: final_md = "Nessun OKR generato."
421
- else: final_md = "\n\n---\n\n".join(output_md_parts)
422
- return gr.update(value=final_md)
423
- if AGENTIC_MODULES_LOADED:
424
- key_results_cbg.change(fn=update_okr_display_on_selection, inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st], outputs=[okr_detail_display_md])
425
-
426
- async def refresh_analytics_graphs_ui(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, current_chat_histories_val):
427
- logging.info("Refreshing analytics graph UI elements and resetting actions/chat.")
428
- start_time = time.time()
429
- plot_gen_results = update_analytics_plots_figures(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, plot_configs)
430
- status_msg, gen_figs, new_summaries = plot_gen_results[0], plot_gen_results[1:-1], plot_gen_results[-1]
431
- all_updates = [status_msg]
432
- all_updates.extend(gen_figs if len(gen_figs) == len(plot_configs) else [create_placeholder_plot("Error", f"Fig missing {i}") for i in range(len(plot_configs))])
433
- all_updates.extend([gr.update(visible=False), gr.update(value=[], visible=False), gr.update(value="", visible=False), gr.update(visible=False), gr.update(value="S1"), gr.update(value="S2"), gr.update(value="S3"), gr.update(value="Formula details here.", visible=False), gr.update(visible=False)])
434
- all_updates.extend([None, None, {}, new_summaries])
435
- for _ in plot_configs: all_updates.extend([gr.update(value=BOMB_ICON), gr.update(value=FORMULA_ICON), gr.update(value=EXPLORE_ICON), gr.update(visible=True)])
436
- all_updates.append(None)
437
- all_updates.extend([gr.update(visible=True)] * num_unique_sections)
438
- end_time = time.time()
439
- logging.info(f"Analytics graph refresh took {end_time - start_time:.2f} seconds.")
440
- expected_len = 15 + 5 * len(plot_configs) + num_unique_sections
441
- logging.info(f"Prepared {len(all_updates)} updates for graph refresh. Expected {expected_len}.")
442
- return tuple(all_updates)
443
-
444
- async def run_agentic_pipeline_autonomously(current_token_state_val): # Removed request: gr.Request for simplicity
445
- logging.info(f"Agentic pipeline check triggered for token_state update. Current token: {'Set' if current_token_state_val.get('token') else 'Not Set'}")
446
-
447
- if not current_token_state_val or not current_token_state_val.get("token"):
448
- logging.info("Agentic pipeline: Token not available in token_state. Skipping.")
449
- yield (
450
- gr.update(value="Pipeline AI: In attesa dei dati necessari..."),
451
- gr.update(choices=[], value=[], interactive=False),
452
- gr.update(value="Pipeline AI: In attesa dei dati necessari..."),
453
- None, [], [], "Pipeline AI: In attesa dei dati..."
454
- )
455
- return
456
-
457
- logging.info("Agentic pipeline starting autonomously with 'Sempre' filter.")
458
- yield (
459
- gr.update(value="Analisi AI (Sempre) in corso..."),
460
- gr.update(choices=[], value=[], interactive=False),
461
- gr.update(value="Dettagli OKR (Sempre) in corso di generazione..."),
462
- orchestration_raw_results_st.value, # Preserve existing results if any during processing
463
- selected_key_result_ids_st.value,
464
- key_results_for_selection_st.value,
465
- "Esecuzione pipeline AI (Sempre)..."
466
  )
467
 
468
- if not AGENTIC_MODULES_LOADED:
469
- logging.warning("Agentic modules not loaded. Skipping autonomous pipeline.")
470
- yield (
471
- gr.update(value="Moduli AI non caricati. Report non disponibile."),
472
- gr.update(choices=[], value=[], interactive=False),
473
- gr.update(value="Moduli AI non caricati. OKR non disponibili."),
474
- None, [], [], "Pipeline AI: Moduli non caricati."
475
- )
476
- return
477
 
478
- try:
479
- date_filter_val_agentic = "Sempre"; custom_start_val_agentic = None; custom_end_val_agentic = None
480
- orchestration_output = await run_full_analytics_orchestration(current_token_state_val, date_filter_val_agentic, custom_start_val_agentic, custom_end_val_agentic)
481
- agentic_status_text = "Pipeline AI (Sempre) completata."
482
- logging.info(f"Autonomous agentic pipeline finished. Output keys: {orchestration_output.keys() if orchestration_output else 'None'}")
483
- if orchestration_output:
484
- orchestration_results_update = orchestration_output
485
- report_str = orchestration_output.get('comprehensive_analysis_report')
486
- agentic_report_md_update = gr.update(value=format_report_to_markdown(report_str))
487
- actionable_okrs = orchestration_output.get('actionable_okrs_and_tasks')
488
- krs_for_ui_selection_list = extract_key_results_for_selection(actionable_okrs)
489
- krs_for_selection_update = krs_for_ui_selection_list
490
- kr_choices_for_cbg = [(kr['kr_description'], kr['unique_kr_id']) for kr in krs_for_ui_selection_list]
491
- key_results_cbg_update = gr.update(choices=kr_choices_for_cbg, value=[], interactive=True)
492
- all_okrs_md_parts = []
493
- if actionable_okrs and isinstance(actionable_okrs.get("okrs"), list):
494
- for okr_idx, okr_item in enumerate(actionable_okrs["okrs"]): all_okrs_md_parts.append(format_single_okr_for_display(okr_item, accepted_kr_indices=None, okr_main_index=okr_idx))
495
- if not all_okrs_md_parts: okr_detail_display_md_update = gr.update(value="Nessun OKR generato o trovato (Sempre).")
496
- else: okr_detail_display_md_update = gr.update(value="\n\n---\n\n".join(all_okrs_md_parts))
497
- selected_krs_update = []
498
- else:
499
- agentic_report_md_update = gr.update(value="Nessun report generato dalla pipeline AI (Sempre).")
500
- key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
501
- okr_detail_display_md_update = gr.update(value="Nessun OKR generato o errore nella pipeline AI (Sempre).")
502
- orchestration_results_update = None; selected_krs_update = []; krs_for_selection_update = []
503
- yield (agentic_report_md_update, key_results_cbg_update, okr_detail_display_md_update, orchestration_results_update, selected_krs_update, krs_for_selection_update, agentic_status_text)
504
- except Exception as e:
505
- logging.error(f"Error during autonomous agentic pipeline execution: {e}", exc_info=True)
506
- agentic_status_text = f"Errore pipeline AI (Sempre): {str(e)}"
507
- yield (gr.update(value=f"Errore generazione report AI (Sempre): {str(e)}"), gr.update(choices=[], value=[], interactive=False), gr.update(value=f"Errore generazione OKR AI (Sempre): {str(e)}"), None, [], [], agentic_status_text)
508
 
509
- graph_refresh_outputs_list = [analytics_status_md]
510
- graph_refresh_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("plot_component", gr.update()) for pc in plot_configs])
511
- _ui_resets_for_graphs = [global_actions_column_ui, insights_chatbot_ui, insights_chat_input_ui, insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn, formula_display_markdown_ui, formula_close_hint_md]
512
- graph_refresh_outputs_list.extend(_ui_resets_for_graphs)
513
- _state_resets_for_graphs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
514
- graph_refresh_outputs_list.extend(_state_resets_for_graphs)
515
- for pc in plot_configs: pid = pc["id"]; graph_refresh_outputs_list.extend([plot_ui_objects.get(pid, {}).get("bomb_button", gr.update()), plot_ui_objects.get(pid, {}).get("formula_button", gr.update()), plot_ui_objects.get(pid, {}).get("explore_button", gr.update()), plot_ui_objects.get(pid, {}).get("panel_component", gr.update())])
516
- graph_refresh_outputs_list.append(explored_plot_id_state)
517
- graph_refresh_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
518
 
519
- agentic_pipeline_outputs_list = [agentic_report_display_md, key_results_cbg, okr_detail_display_md, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st, agentic_pipeline_status_md]
520
-
521
- graph_refresh_inputs = [token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st]
522
- agentic_pipeline_inputs = [token_state]
 
 
 
523
 
524
- apply_filter_btn.click(
525
- fn=refresh_analytics_graphs_ui,
526
- inputs=graph_refresh_inputs,
527
- outputs=graph_refresh_outputs_list,
528
- show_progress="full"
529
- )
530
 
531
  initial_load_event = org_urn_display.change(
532
- fn=initial_load_sequence,
533
  inputs=[url_user_token_display, org_urn_display, token_state],
534
  outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
535
  show_progress="full"
536
  )
 
 
537
  initial_load_event.then(
538
- fn=refresh_analytics_graphs_ui,
539
- inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
540
- outputs=graph_refresh_outputs_list,
541
  show_progress="full"
542
- ).then(
543
- fn=run_agentic_pipeline_autonomously,
544
- inputs=agentic_pipeline_inputs,
545
- outputs=agentic_pipeline_outputs_list,
546
  show_progress="minimal"
547
  )
548
 
 
549
  sync_event_part1 = sync_data_btn.click(
550
  fn=sync_all_linkedin_data_orchestrator,
551
  inputs=[token_state],
552
- outputs=[sync_status_html_output, token_state],
553
  show_progress="full"
554
  )
 
 
555
  sync_event_part2 = sync_event_part1.then(
556
- fn=process_and_store_bubble_token,
557
- inputs=[url_user_token_display, org_urn_display, token_state],
558
- outputs=[status_box, token_state, sync_data_btn],
559
- show_progress=False
560
  )
561
- sync_event_part2.then( # This will now use the updated token_state from process_and_store_bubble_token
562
- fn=run_agentic_pipeline_autonomously,
563
- inputs=agentic_pipeline_inputs, # token_state is the first element
564
- outputs=agentic_pipeline_outputs_list,
 
 
565
  show_progress="minimal"
566
  )
 
 
567
  sync_event_part3 = sync_event_part2.then(
568
  fn=display_main_dashboard,
569
- inputs=[token_state],
570
  outputs=[dashboard_display_html],
571
  show_progress=False
572
  )
 
 
573
  sync_event_graphs_after_sync = sync_event_part3.then(
574
- fn=refresh_analytics_graphs_ui,
575
- inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
576
- outputs=graph_refresh_outputs_list,
577
  show_progress="full"
578
  )
579
 
580
-
581
  if __name__ == "__main__":
582
  if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
583
  if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
584
  logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
585
- if not AGENTIC_MODULES_LOADED: logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 3 and 4 (formerly 5 and 6) will be non-functional.")
586
- if not os.environ.get("GEMINI_API_KEY") and AGENTIC_MODULES_LOADED: logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. La pipeline AI per le tab 3 e 4 potrebbe non funzionare.")
587
- try: logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
588
- except ImportError: logging.warning("Matplotlib non trovato.")
589
- app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
 
 
 
 
 
 
 
 
 
 
 
5
  import logging
6
  import matplotlib
7
  matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
8
+ # import time # No longer directly used here for profiling
9
+ from datetime import datetime, timedelta
10
+ # import numpy as np # No longer directly used here
11
+ # from collections import OrderedDict, defaultdict # Moved or not needed directly
 
 
12
 
13
  # --- Module Imports ---
14
  from utils.gradio_utils import get_url_user_token
 
15
  from config import (
16
  LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
17
+ BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR) # PLOT_ID_TO_FORMULA_KEY_MAP moved
 
18
  from services.state_manager import process_and_store_bubble_token
19
  from services.sync_logic import sync_all_linkedin_data_orchestrator
20
+ from ui.ui_generators import display_main_dashboard # Other UI generators moved or used internally by new modules
 
 
 
 
 
 
21
 
22
+ # --- NEW UI MODULE IMPORTS ---
23
+ from ui import analytics_tab
24
+ from ui import agentic_module
 
25
 
26
+ # --- EXISTING CHATBOT MODULE IMPORTS (used by analytics_tab) ---
27
+ # from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions # Used in analytics_tab
28
+ # from features.chatbot.chatbot_handler import generate_llm_response # Used in analytics_tab
29
+
30
+ # --- AGENTIC PIPELINE IMPORTS (used by agentic_module) ---
31
+ # AGENTIC_MODULES_LOADED is handled within agentic_module.py
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  # Configure logging
34
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
 
36
  # 1. Set Vertex AI usage preference (if applicable)
37
  os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
38
 
39
+ # 2. Get your API key
40
  user_provided_api_key = os.environ.get("GEMINI_API_KEY")
 
41
  if user_provided_api_key:
42
  os.environ["GOOGLE_API_KEY"] = user_provided_api_key
43
  logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.")
44
  else:
45
+ logging.error(f"CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found.")
46
 
47
 
48
  # --- Gradio UI Blocks ---
49
  with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
50
+ title="LinkedIn Organization Dashboard") as app:
51
+
52
+ # --- Core States ---
53
  token_state = gr.State(value={
54
  "token": None, "client_id": None, "org_urn": None,
55
  "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
56
+ "bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
 
57
  "fetch_count_for_api": 0, "url_user_token_temp_storage": None,
58
  "config_date_col_posts": "published_at", "config_date_col_mentions": "date",
59
  "config_date_col_followers": "date", "config_media_type_col": "media_type",
60
  "config_eb_labels_col": "li_eb_label"
61
  })
62
 
63
+ # States for analytics tab chatbot (passed to analytics_tab module)
64
  chat_histories_st = gr.State({})
65
  current_chat_plot_id_st = gr.State(None)
66
+ plot_data_for_chatbot_st = gr.State({}) # Populated by analytics_tab.handle_refresh_analytics_graphs
67
+ active_panel_action_state = gr.State(None) # For insights/formula panel
68
+ explored_plot_id_state = gr.State(None) # For explore plot view
69
 
70
+ # States for Agentic Pipeline (passed to agentic_module)
71
  orchestration_raw_results_st = gr.State(None)
72
+ key_results_for_selection_st = gr.State([]) # Stores the list of dicts for choices
73
+ selected_key_result_ids_st = gr.State([]) # Stores the selected unique_kr_ids
 
74
 
75
+ # --- Top Level UI ---
76
  gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
77
  url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
78
  status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
79
  org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
80
 
81
+ # Load URL parameters on app load
82
  app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
83
 
84
+ # --- Tabs ---
 
 
 
 
85
  with gr.Tabs() as tabs:
86
+ # --- Tab 1: Dashboard & Sync ---
87
  with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
88
  gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
89
  sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
90
  sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
91
  dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
92
 
93
+ # --- Tab 2: Analisi Grafici ---
94
+ with gr.TabItem("2️⃣ Analisi Grafici", id="tab_analytics"):
95
+ # Build UI and wire internal events within analytics_tab module
96
+ (apply_filter_btn_analytics, date_filter_selector_analytics,
97
+ custom_start_date_picker_analytics, custom_end_date_picker_analytics,
98
+ analytics_status_md_ref, # Reference to the status markdown in analytics tab
99
+ analytics_refresh_outputs_components, # list of components for refresh handler output
100
+ analytics_refresh_outputs_plus_states # list of components + states for refresh handler output
101
+ ) = analytics_tab.build_and_wire_tab(
102
+ token_state, chat_histories_st, current_chat_plot_id_st,
103
+ plot_data_for_chatbot_st, active_panel_action_state, explored_plot_id_state
 
 
 
 
 
 
 
 
 
 
 
 
 
104
  )
105
+
106
+ # --- Tabs 3 & 4: Agentic Pipeline ---
107
+ # build_and_wire_tabs will create TabItems internally
108
+ agentic_pipeline_output_components = agentic_module.build_and_wire_tabs(
109
+ orchestration_raw_results_st,
110
+ key_results_for_selection_st,
111
+ selected_key_result_ids_st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  )
113
 
 
 
 
 
 
 
 
 
 
114
 
115
+ # --- Event Chaining & Orchestration ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
+ # Initial Load Sequence (Simplified: direct calls, complex logic in handlers)
118
+ def initial_load_sequence_wrapper(url_token, org_urn_val, current_state):
119
+ # This function is primarily for the first tab's initial state.
120
+ status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
121
+ dashboard_content = display_main_dashboard(new_state) # From ui_generators
122
+ return status_msg, new_state, btn_update, dashboard_content
 
 
 
123
 
124
+ # Outputs for the agentic pipeline handler
125
+ # Order: report_display, key_results_cbg, okr_detail_display,
126
+ # orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st,
127
+ # agentic_pipeline_status_md
128
+ agentic_pipeline_full_outputs_list = agentic_pipeline_output_components[:3] + \
129
+ [orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st] + \
130
+ [agentic_pipeline_output_components[3]]
131
 
 
 
 
 
 
 
132
 
133
  initial_load_event = org_urn_display.change(
134
+ fn=initial_load_sequence_wrapper,
135
  inputs=[url_user_token_display, org_urn_display, token_state],
136
  outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
137
  show_progress="full"
138
  )
139
+
140
+ # After initial load, refresh analytics graphs
141
  initial_load_event.then(
142
+ fn=analytics_tab.handle_refresh_analytics_graphs,
143
+ inputs=[token_state, date_filter_selector_analytics, custom_start_date_picker_analytics, custom_end_date_picker_analytics, chat_histories_st],
144
+ outputs=analytics_refresh_outputs_plus_states, # Use the list from analytics_tab
145
  show_progress="full"
146
+ ).then( # Then run agentic pipeline
147
+ fn=agentic_module.handle_run_agentic_pipeline,
148
+ inputs=[token_state, orchestration_raw_results_st, key_results_for_selection_st, selected_key_result_ids_st], # Pass states
149
+ outputs=agentic_pipeline_full_outputs_list,
150
  show_progress="minimal"
151
  )
152
 
153
+ # Sync Data Event Chain
154
  sync_event_part1 = sync_data_btn.click(
155
  fn=sync_all_linkedin_data_orchestrator,
156
  inputs=[token_state],
157
+ outputs=[sync_status_html_output, token_state], # token_state is updated here
158
  show_progress="full"
159
  )
160
+
161
+ # After sync, re-process token and update dashboard display (Tab 1)
162
  sync_event_part2 = sync_event_part1.then(
163
+ fn=process_and_store_bubble_token, # This updates token_state again
164
+ inputs=[url_user_token_display, org_urn_display, token_state], # Pass the updated token_state
165
+ outputs=[status_box, token_state, sync_data_btn], # token_state updated again
166
+ show_progress=False
167
  )
168
+
169
+ # After token processing, re-run agentic pipeline with potentially new data
170
+ sync_event_part2.then(
171
+ fn=agentic_module.handle_run_agentic_pipeline,
172
+ inputs=[token_state, orchestration_raw_results_st, key_results_for_selection_st, selected_key_result_ids_st], # Pass the latest token_state
173
+ outputs=agentic_pipeline_full_outputs_list,
174
  show_progress="minimal"
175
  )
176
+
177
+ # Then, update the main dashboard display on Tab 1
178
  sync_event_part3 = sync_event_part2.then(
179
  fn=display_main_dashboard,
180
+ inputs=[token_state], # Use the latest token_state
181
  outputs=[dashboard_display_html],
182
  show_progress=False
183
  )
184
+
185
+ # Finally, refresh analytics graphs on Tab 2
186
  sync_event_graphs_after_sync = sync_event_part3.then(
187
+ fn=analytics_tab.handle_refresh_analytics_graphs,
188
+ inputs=[token_state, date_filter_selector_analytics, custom_start_date_picker_analytics, custom_end_date_picker_analytics, chat_histories_st],
189
+ outputs=analytics_refresh_outputs_plus_states, # Use the list from analytics_tab
190
  show_progress="full"
191
  )
192
 
193
+ # --- App Launch ---
194
  if __name__ == "__main__":
195
  if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
196
  if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
197
  logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
198
+
199
+ # AGENTIC_MODULES_LOADED is now checked within agentic_module.py, log from there if needed.
200
+ # We can add a check here based on the import success if desired for app startup.
201
+ if not agentic_module.AGENTIC_MODULES_LOADED: # Check the flag from the module
202
+ logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 3 and 4 will be non-functional.")
203
+ if not os.environ.get("GEMINI_API_KEY") and agentic_module.AGENTIC_MODULES_LOADED:
204
+ logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. La pipeline AI per le tab 3 e 4 potrebbe non funzionare.")
205
+
206
+ try:
207
+ logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
208
+ except ImportError:
209
+ logging.warning("Matplotlib non trovato.")
210
+
211
+ app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
212
+