File size: 13,446 Bytes
6277fe0
b560569
575b933
b0464a9
87a87e7
791c130
 
2e2e19a
 
 
 
 
 
f7fc39b
575b933
826a2a1
2e2e19a
 
575b933
 
2e2e19a
 
 
 
 
 
2bd9dad
 
2601f1c
2e2e19a
 
5a483f8
2e2e19a
 
 
 
 
1fa587a
2e2e19a
432255b
 
 
2e2e19a
 
 
 
 
 
 
7aa6c73
2a3b22e
3b4dccb
2a3b22e
2e2e19a
 
1644cc1
77179e2
 
1644cc1
77179e2
2e2e19a
77179e2
2e2e19a
adb3bbe
2e2e19a
 
 
67742c4
a342a6b
6a8e128
2e2e19a
 
6a8e128
 
 
2601f1c
67742c4
2e2e19a
 
 
 
 
6277fe0
2e2e19a
 
 
adb3bbe
2e2e19a
 
 
 
7aa6c73
2e2e19a
a342a6b
d33040c
 
 
6277fe0
2e2e19a
 
a342a6b
575b933
2e2e19a
791c130
 
2e2e19a
6277fe0
1fa587a
2e2e19a
1644cc1
2e2e19a
 
 
1644cc1
2e2e19a
 
 
 
 
1644cc1
2e2e19a
 
b30e5c5
2e2e19a
 
 
 
 
 
 
 
 
 
 
 
 
1644cc1
2e2e19a
 
 
 
 
 
1644cc1
2e2e19a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a483f8
2e2e19a
 
1644cc1
2e2e19a
 
 
 
 
 
 
1644cc1
2e2e19a
 
1644cc1
2e2e19a
 
 
 
 
 
 
 
 
 
1644cc1
2e2e19a
 
 
 
 
 
 
 
 
1644cc1
2e2e19a
 
 
 
 
 
 
 
 
1644cc1
2e2e19a
 
1644cc1
1fa587a
1644cc1
2e2e19a
 
 
 
1644cc1
1fa587a
2e2e19a
 
 
 
 
 
 
 
 
 
 
 
 
 
1644cc1
1fa587a
2e2e19a
 
 
 
 
 
 
 
 
 
 
5a483f8
266ae82
2e2e19a
 
adb3bbe
2e2e19a
 
 
a6bc02b
 
1fa587a
2e2e19a
 
 
 
1fa587a
 
2e2e19a
1fa587a
2e2e19a
1fa587a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# app.py
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
# import matplotlib.pyplot as plt # Not directly used in app.py anymore
import time # For profiling if needed
# from datetime import datetime, timedelta # Not directly used in app.py
# import numpy as np # Not directly used in app.py
# from collections import OrderedDict, defaultdict # Not directly used in app.py
import asyncio # For async operations

# --- Module Imports ---
from utils.gradio_utils import get_url_user_token

# Configuration (assuming these exist and are correctly defined)
from config import (
    LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
    BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
    # PLOT_ID_TO_FORMULA_KEY_MAP # Used in analytics_handlers
)
# from formulas import PLOT_FORMULAS # Used in analytics_handlers

# Services (assuming these exist and are correctly defined)
from services.state_manager import process_and_store_bubble_token
from services.sync_logic import sync_all_linkedin_data_orchestrator

# UI Generators (assuming these exist and are correctly defined)
from ui.ui_generators import display_main_dashboard #, build_analytics_tab_plot_area, BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON

# Tab Setup UI functions
from ui.dashboard_sync_tab import setup_dashboard_sync_tab
from ui.analytics_tab_setup import setup_analytics_tab
from ui.agentic_report_tab import setup_agentic_report_tab
from ui.agentic_okrs_tab import setup_agentic_okrs_tab

# Handler Classes
from services.dashboard_sync_handlers import DashboardSyncHandlers
from services.analytics_handlers import AnalyticsHandlers
from services.agentic_handlers import AgenticHandlers, AGENTIC_MODULES_LOADED as AGENTIC_HANDLERS_MODULES_LOADED

# Check consistency of AGENTIC_MODULES_LOADED
# This flag is crucial for conditional UI rendering and functionality.
# The one from AgenticHandlers is based on its own try-except for its specific imports.
# We might need a global one if app.py itself tries to import agentic modules directly.
# For now, using the one from AgenticHandlers as it's most relevant to agentic functionality.
APP_AGENTIC_MODULES_LOADED = AGENTIC_HANDLERS_MODULES_LOADED

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')

# API Key Setup
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False" 
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
if user_provided_api_key:
    os.environ["GOOGLE_API_KEY"] = user_provided_api_key
    logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.")
else:
    logging.error("CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found.")

# --- Main Gradio Application ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
                title="LinkedIn Organization Dashboard") as app:

    # --- Global States ---
    token_state = gr.State(value={
        "token": None, "client_id": None, "org_urn": None,
        "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
        "bubble_mentions_df": pd.DataFrame(), 
        "bubble_follower_stats_df": pd.DataFrame(),
        "fetch_count_for_api": 0, "url_user_token_temp_storage": None,
        "config_date_col_posts": "published_at", "config_date_col_mentions": "date",
        "config_date_col_followers": "date", "config_media_type_col": "media_type",
        "config_eb_labels_col": "li_eb_label"
    })
    
    # States for analytics tab chatbot
    chat_histories_st = gr.State({}) # Stores chat histories for each plot_id {plot_id: [{"role":"user",...}]}
    current_chat_plot_id_st = gr.State(None) # ID of the plot currently active in chat
    plot_data_for_chatbot_st = gr.State({}) # Stores summaries for plots {plot_id: "summary text"}

    # States for analytics tab panel management
    active_panel_action_state = gr.State(None) # Tracks current active panel e.g. {"plot_id": "X", "type": "insights"}
    explored_plot_id_state = gr.State(None) # Tracks if a plot is being "explored" (others hidden)

    # States for Agentic Pipeline
    orchestration_raw_results_st = gr.State(None) # Stores raw output from run_full_analytics_orchestration
    key_results_for_selection_st = gr.State([]) # Stores list of dicts for KR checkbox group choices
    selected_key_result_ids_st = gr.State([]) # Stores list of selected KR unique IDs from checkbox group (though CBG value is source of truth)

    # --- Hidden Components for URL Params ---
    gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
    url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
    status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
    org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)

    # --- Load URL parameters ---
    # This runs on app load to fetch params from the URL query string
    app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)

    # --- UI Setup for Tabs ---
    with gr.Tabs() as tabs:
        with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
            dashboard_sync_components = setup_dashboard_sync_tab()

        with gr.TabItem("2️⃣ Analisi Grafici", id="tab_analytics"):
            analytics_components = setup_analytics_tab() # This returns a dict of all components in the tab

        # Agentic tabs are conditional
        agentic_report_components = {}
        agentic_okrs_components = {}

        with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=APP_AGENTIC_MODULES_LOADED):
            agentic_report_components = setup_agentic_report_tab(APP_AGENTIC_MODULES_LOADED)
        
        with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=APP_AGENTIC_MODULES_LOADED):
            agentic_okrs_components = setup_agentic_okrs_tab(APP_AGENTIC_MODULES_LOADED)

    # --- Initialize Handlers ---
    dashboard_sync_handler = DashboardSyncHandlers(
        dashboard_sync_components, token_state, url_user_token_display, org_urn_display, status_box
    )
    
    analytics_handler = AnalyticsHandlers(
        analytics_components, token_state, chat_histories_st, current_chat_plot_id_st, 
        plot_data_for_chatbot_st, active_panel_action_state, explored_plot_id_state
    )
    
    agentic_handler = None
    if APP_AGENTIC_MODULES_LOADED:
        agentic_handler = AgenticHandlers(
            agentic_report_components, agentic_okrs_components, token_state,
            orchestration_raw_results_st, key_results_for_selection_st, selected_key_result_ids_st
        )

    # --- Setup Event Handlers from Handler Classes ---
    # Dashboard/Sync handlers are mostly involved in chained events below
    analytics_handler.setup_event_handlers() # Sets up internal events for analytics tab
    
    if APP_AGENTIC_MODULES_LOADED and agentic_handler:
        agentic_handler.setup_event_handlers() # Sets up internal events for agentic tabs (e.g., KR selection)

    # --- Chained Event Logic (Initial Load & Sync) ---
    
    # Outputs for the agentic pipeline run
    # Ensure these components exist even if the tab is not visible, or handle None gracefully.
    agentic_pipeline_outputs_list = [
        agentic_report_components.get("agentic_report_display_md", gr.update()),
        agentic_okrs_components.get("key_results_cbg", gr.update()),
        agentic_okrs_components.get("okr_detail_display_md", gr.update()),
        orchestration_raw_results_st,
        selected_key_result_ids_st, # This state is primarily driven by CBG, but pipeline might reset it
        key_results_for_selection_st,
        agentic_report_components.get("agentic_pipeline_status_md", gr.update())
    ]
    
    # Initial Load Sequence:
    # 1. Get URL token (app.load)
    # 2. Process token, update dashboard (initial_load_sequence from dashboard_sync_handler)
    # 3. Refresh analytics graphs (analytics_handler.refresh_analytics_graphs_ui)
    # 4. Run agentic pipeline (agentic_handler.run_agentic_pipeline_autonomously_on_update)

    initial_load_event = org_urn_display.change( # Triggers after app.load populates org_urn_display
        fn=dashboard_sync_handler.initial_load_sequence,
        inputs=[url_user_token_display, org_urn_display, token_state],
        outputs=[
            status_box, 
            token_state, 
            dashboard_sync_components['sync_data_btn'], 
            dashboard_sync_components['dashboard_display_html']
        ],
        show_progress="full" # For the initial data processing part
    )

    # Chain analytics refresh after initial load
    initial_load_event.then(
        fn=analytics_handler.refresh_analytics_graphs_ui,
        inputs=[
            token_state, 
            analytics_components['date_filter_selector'], 
            analytics_components['custom_start_date_picker'], 
            analytics_components['custom_end_date_picker']
            # chat_histories_st is accessed via self.chat_histories_st in the handler
        ],
        outputs=analytics_handler._get_graph_refresh_outputs_list(), # Get the list of output components
        show_progress="full" # For graph generation
    )
    
    # Chain agentic pipeline run after initial analytics refresh (if modules loaded)
    if APP_AGENTIC_MODULES_LOADED and agentic_handler:
        initial_load_event.then( # Chaining from initial_load_event ensures it uses the updated token_state
            fn=agentic_handler.run_agentic_pipeline_autonomously_on_update,
            inputs=[token_state], # Depends on the updated token_state
            outputs=agentic_pipeline_outputs_list,
            show_progress="minimal" # For agentic pipeline
        )

    # Sync Data Sequence:
    # 1. sync_all_linkedin_data_orchestrator
    # 2. process_and_store_bubble_token (to update state based on sync results)
    # 3. display_main_dashboard
    # 4. refresh_analytics_graphs_ui
    # 5. run_agentic_pipeline_autonomously_on_update

    sync_event_part1 = dashboard_sync_components['sync_data_btn'].click(
        fn=sync_all_linkedin_data_orchestrator, # From services.sync_logic
        inputs=[token_state],
        outputs=[dashboard_sync_components['sync_status_html_output'], token_state],
        show_progress="full" # For the main sync operation
    )
    
    sync_event_part2 = sync_event_part1.then(
        fn=process_and_store_bubble_token, # From services.state_manager
        inputs=[url_user_token_display, org_urn_display, token_state], # Uses the updated token_state from part1
        outputs=[status_box, token_state, dashboard_sync_components['sync_data_btn']],
        show_progress=False # Quick state update
    )
    
    # Chain agentic pipeline run after sync and token processing (if modules loaded)
    if APP_AGENTIC_MODULES_LOADED and agentic_handler:
        sync_event_part2.then(
            fn=agentic_handler.run_agentic_pipeline_autonomously_on_update,
            inputs=[token_state], # Uses the token_state updated by process_and_store_bubble_token
            outputs=agentic_pipeline_outputs_list,
            show_progress="minimal"
        )
        
    sync_event_part3 = sync_event_part2.then( # Continues from token processing
        fn=display_main_dashboard, # From ui.ui_generators
        inputs=[token_state], # Uses the updated token_state
        outputs=[dashboard_sync_components['dashboard_display_html']],
        show_progress=False # Quick UI update
    )
    
    # Chain analytics refresh after dashboard update post-sync
    sync_event_part3.then(
        fn=analytics_handler.refresh_analytics_graphs_ui,
        inputs=[
            token_state, 
            analytics_components['date_filter_selector'], 
            analytics_components['custom_start_date_picker'], 
            analytics_components['custom_end_date_picker']
        ],
        outputs=analytics_handler._get_graph_refresh_outputs_list(),
        show_progress="full" # For graph generation after sync
    )


# --- Launch ---
if __name__ == "__main__":
    # Environment variable checks (optional but good practice)
    if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): 
        logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
    if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
        logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
    
    if not APP_AGENTIC_MODULES_LOADED: 
        logging.warning("CRITICAL: Agentic pipeline modules failed to load. Agentic tabs (3 and 4) will be non-functional or hidden.")
    
    if not os.environ.get("GEMINI_API_KEY") and APP_AGENTIC_MODULES_LOADED: 
        logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. La pipeline AI per le tab 3 e 4 potrebbe non funzionare.")
    
    try: 
        logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
    except ImportError: 
        logging.warning("Matplotlib non trovato.")
        
    app.launch(server_name="0.0.0.0", server_port=7860, debug=True)