A newer version of the Streamlit SDK is available:
1.48.1
Customer Agent RL
Overview
This project simulates an advanced customer behavior analysis using an RL agent (Deep Q-Network) based on a comprehensive synthetic dataset covering multiple sectors (Retail, E-commerce, Banking, Telecom, Travel). The dataset (30,000+ records) is generated using research insights and inserted into a local MongoDB database.
File Structure
[AI_CUSTOMER_BEHAVIOR/ βββ data/ β βββ customers.csv # Generated synthetic customer records (30,000+) βββ models/ β βββ dqn_model.pth # Saved RL model weights after training βββ src/ β βββ generate_data.py # Script to generate a comprehensive multi-sector dataset β βββ insert_data.py # Script to load the CSV and insert data into MongoDB β βββ rl_agent.py # Advanced Deep Q-Network (DQN) agent implementation (OΒ³ model style) β βββ dashboard.py # Streamlit dashboard to visualize customer behavior insights βββ notebooks/ β βββ exploration.ipynb # Notebook for exploratory analysis and experiments βββ requirements.txt # Dependencies for the project βββ config.yaml # Configuration file for settings (MongoDB URI, hyperparameters, etc.) βββ README.md # Documentation and instructions
Setup & Usage
- Install Dependencies
pip install -r requirements.txt