File size: 1,519 Bytes
e0356a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Customer Agent RL

## Overview
This project simulates an advanced customer behavior analysis using an RL agent (Deep Q-Network) based on a comprehensive synthetic dataset covering multiple sectors (Retail, E-commerce, Banking, Telecom, Travel). The dataset (30,000+ records) is generated using research insights and inserted into a local MongoDB database.

## File Structure
[AI_CUSTOMER_BEHAVIOR/
│── data/
β”‚   └── customers.csv            # Generated synthetic customer records (30,000+)
│── models/
β”‚   └── dqn_model.pth            # Saved RL model weights after training

│── src/

β”‚   β”œβ”€β”€ generate_data.py         # Script to generate a comprehensive multi-sector dataset
β”‚   β”œβ”€β”€ insert_data.py           # Script to load the CSV and insert data into MongoDB

β”‚   β”œβ”€β”€ rl_agent.py              # Advanced Deep Q-Network (DQN) agent implementation (OΒ³ model style)
β”‚   └── dashboard.py             # Streamlit dashboard to visualize customer behavior insights
│── notebooks/
β”‚   └── exploration.ipynb        # Notebook for exploratory analysis and experiments
│── requirements.txt             # Dependencies for the project
│── config.yaml                  # Configuration file for settings (MongoDB URI, hyperparameters, etc.)
└── README.md                    # Documentation and instructions


## Setup & Usage

1. **Install Dependencies**  
   ```bash

   pip install -r requirements.txt