File size: 1,519 Bytes
e0356a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
# Customer Agent RL
## Overview
This project simulates an advanced customer behavior analysis using an RL agent (Deep Q-Network) based on a comprehensive synthetic dataset covering multiple sectors (Retail, E-commerce, Banking, Telecom, Travel). The dataset (30,000+ records) is generated using research insights and inserted into a local MongoDB database.
## File Structure
[AI_CUSTOMER_BEHAVIOR/
βββ data/
β βββ customers.csv # Generated synthetic customer records (30,000+)
βββ models/
β βββ dqn_model.pth # Saved RL model weights after training
βββ src/
β βββ generate_data.py # Script to generate a comprehensive multi-sector dataset
β βββ insert_data.py # Script to load the CSV and insert data into MongoDB
β βββ rl_agent.py # Advanced Deep Q-Network (DQN) agent implementation (OΒ³ model style)
β βββ dashboard.py # Streamlit dashboard to visualize customer behavior insights
βββ notebooks/
β βββ exploration.ipynb # Notebook for exploratory analysis and experiments
βββ requirements.txt # Dependencies for the project
βββ config.yaml # Configuration file for settings (MongoDB URI, hyperparameters, etc.)
βββ README.md # Documentation and instructions
## Setup & Usage
1. **Install Dependencies**
```bash
pip install -r requirements.txt
|