Spaces:
Running
Running
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Conv2D, Flatten, MaxPooling2D, Dense, Dropout, SpatialDropout2D | |
from tensorflow.keras.losses import sparse_categorical_crossentropy, binary_crossentropy | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras.preprocessing.image import ImageDataGenerator | |
import numpy as np | |
from PIL import Image | |
def gen_labels(): | |
train = 'Dataset/Train' | |
train_generator = ImageDataGenerator(rescale = 1/255) | |
train_generator = train_generator.flow_from_directory(train, | |
target_size = (300,300), | |
batch_size = 32, | |
class_mode = 'sparse') | |
labels = (train_generator.class_indices) | |
labels = dict((v,k) for k,v in labels.items()) | |
return labels | |
def preprocess(image): | |
image = np.array(image.resize((256, 256), Image.LANCZOS)) | |
image = np.array(image, dtype='uint8') | |
image = np.array(image) / 255.0 | |
return image | |
def model_arc(): | |
model = Sequential() | |
# Convolution blocks | |
model.add(Conv2D(32, kernel_size=(3,3), padding='same', input_shape=(300,300,3), activation='relu')) | |
model.add(MaxPooling2D(pool_size=2)) | |
model.add(Conv2D(64, kernel_size=(3,3), padding='same', activation='relu')) | |
model.add(MaxPooling2D(pool_size=2)) | |
model.add(Conv2D(32, kernel_size=(3,3), padding='same', activation='relu')) | |
model.add(MaxPooling2D(pool_size=2)) | |
# Classification layers | |
model.add(Flatten()) | |
model.add(Dense(64, activation='relu')) | |
model.add(Dropout(0.2)) | |
model.add(Dense(32, activation='relu')) | |
model.add(Dropout(0.2)) | |
model.add(Dense(6, activation='softmax')) | |
return model | |