from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, Flatten, MaxPooling2D, Dense, Dropout, SpatialDropout2D from tensorflow.keras.losses import sparse_categorical_crossentropy, binary_crossentropy from tensorflow.keras.optimizers import Adam from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np from PIL import Image def gen_labels(): train = 'Dataset/Train' train_generator = ImageDataGenerator(rescale = 1/255) train_generator = train_generator.flow_from_directory(train, target_size = (300,300), batch_size = 32, class_mode = 'sparse') labels = (train_generator.class_indices) labels = dict((v,k) for k,v in labels.items()) return labels def preprocess(image): image = np.array(image.resize((256, 256), Image.LANCZOS)) image = np.array(image, dtype='uint8') image = np.array(image) / 255.0 return image def model_arc(): model = Sequential() # Convolution blocks model.add(Conv2D(32, kernel_size=(3,3), padding='same', input_shape=(300,300,3), activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Conv2D(64, kernel_size=(3,3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Conv2D(32, kernel_size=(3,3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) # Classification layers model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(6, activation='softmax')) return model