Spaces:
Running
Running
Commit
·
977cc9d
1
Parent(s):
58bd1b2
Upload utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow.keras.models import Sequential
|
2 |
+
from tensorflow.keras.layers import Conv2D, Flatten, MaxPooling2D, Dense, Dropout, SpatialDropout2D
|
3 |
+
from tensorflow.keras.losses import sparse_categorical_crossentropy, binary_crossentropy
|
4 |
+
from tensorflow.keras.optimizers import Adam
|
5 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
def gen_labels():
|
10 |
+
train = 'Dataset/Train'
|
11 |
+
train_generator = ImageDataGenerator(rescale = 1/255)
|
12 |
+
|
13 |
+
train_generator = train_generator.flow_from_directory(train,
|
14 |
+
target_size = (300,300),
|
15 |
+
batch_size = 32,
|
16 |
+
class_mode = 'sparse')
|
17 |
+
labels = (train_generator.class_indices)
|
18 |
+
labels = dict((v,k) for k,v in labels.items())
|
19 |
+
|
20 |
+
return labels
|
21 |
+
|
22 |
+
def preprocess(image):
|
23 |
+
image = np.array(image.resize((256, 256), Image.LANCZOS))
|
24 |
+
image = np.array(image, dtype='uint8')
|
25 |
+
image = np.array(image) / 255.0
|
26 |
+
|
27 |
+
return image
|
28 |
+
|
29 |
+
def model_arc():
|
30 |
+
model = Sequential()
|
31 |
+
|
32 |
+
# Convolution blocks
|
33 |
+
model.add(Conv2D(32, kernel_size=(3,3), padding='same', input_shape=(300,300,3), activation='relu'))
|
34 |
+
model.add(MaxPooling2D(pool_size=2))
|
35 |
+
|
36 |
+
model.add(Conv2D(64, kernel_size=(3,3), padding='same', activation='relu'))
|
37 |
+
model.add(MaxPooling2D(pool_size=2))
|
38 |
+
|
39 |
+
model.add(Conv2D(32, kernel_size=(3,3), padding='same', activation='relu'))
|
40 |
+
model.add(MaxPooling2D(pool_size=2))
|
41 |
+
|
42 |
+
# Classification layers
|
43 |
+
model.add(Flatten())
|
44 |
+
|
45 |
+
model.add(Dense(64, activation='relu'))
|
46 |
+
model.add(Dropout(0.2))
|
47 |
+
model.add(Dense(32, activation='relu'))
|
48 |
+
|
49 |
+
model.add(Dropout(0.2))
|
50 |
+
model.add(Dense(6, activation='softmax'))
|
51 |
+
|
52 |
+
return model
|