Spaces:
Sleeping
Sleeping
File size: 4,600 Bytes
d93bcf7 e84dd7a 8a0479e 8a90849 8a0479e c8d23f0 306d267 8a0479e 8a90849 8a0479e 8a90849 e84dd7a b1ba5f4 d93bcf7 306d267 e84dd7a d93bcf7 306d267 d93bcf7 e84dd7a 3ed9ca7 fdb3da7 d93bcf7 8a90849 d93bcf7 c8d23f0 306d267 d93bcf7 e84dd7a d93bcf7 e84dd7a d93bcf7 8a90849 8792e37 d93bcf7 08dabce d93bcf7 c8d23f0 d93bcf7 08dabce d93bcf7 c8d23f0 306d267 e84dd7a 8792e37 e84dd7a 8f571c2 8a0479e 2b80c17 8a0479e 70b099a 8a90849 8a0479e 4177b2f 36c2414 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import pandas as pd
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import traceback
from retriever import get_relevant_passages
from reranker import rerank
# Create FastAPI app
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# === Load and Clean CSV ===
def clean_df(df):
df = df.copy()
second_col = df.iloc[:, 2].astype(str)
if second_col.str.contains('http').any() or second_col.str.contains('www').any():
df["url"] = second_col
else:
df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x)
df["description"] = df.iloc[:, 6]
df["duration"] = pd.to_numeric(df.iloc[:, 9].astype(str).str.extract(r'(\d+)')[0], errors='coerce')
return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]
try:
df = pd.read_csv("assesments.csv", encoding='utf-8')
df_clean = clean_df(df)
print(f"Successfully loaded {len(df_clean)} assessments")
except Exception as e:
print(f"Error loading data: {e}")
df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support", "description", "duration", "test_type"])
# === Utility ===
def validate_and_fix_urls(candidates):
for candidate in candidates:
if not isinstance(candidate, dict):
continue
if 'url' not in candidate or not candidate['url']:
candidate['url'] = 'https://www.shl.com/missing-url'
continue
url = str(candidate['url'])
if url.isdigit():
candidate['url'] = f"https://www.shl.com/{url}"
continue
if not url.startswith(('http://', 'https://')):
candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}"
return candidates
# === Recommendation Logic ===
def recommend(query):
if not query or not query.strip():
return {"error": "Please enter a job description"}
try:
top_k_df = get_relevant_passages(query, df_clean, top_k=20)
if top_k_df.empty:
return {"error": "No matching assessments found"}
top_k_df['test_type'] = top_k_df['test_type'].apply(
lambda x: x if isinstance(x, list) else
(eval(x) if isinstance(x, str) and x.startswith('[') else [str(x)])
)
top_k_df['duration'] = top_k_df['duration'].fillna(-1).astype(int)
top_k_df.loc[top_k_df['duration'] == -1, 'duration'] = None
candidates = top_k_df.to_dict(orient="records")
candidates = validate_and_fix_urls(candidates)
result = rerank(query, candidates)
if 'recommended_assessments' in result:
result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments'])
return result
except Exception as e:
print(traceback.format_exc())
return {"error": f"Error processing request: {str(e)}"}
# === FastAPI Endpoints ===
@app.get("/health")
async def health():
return JSONResponse(content={"status": "healthy"}, status_code=200)
@app.post("/recommend")
async def recommend_api(request: Request):
try:
data = await request.json()
query = data.get("query", "").strip()
if not query:
return JSONResponse(content={"error": "Missing query"}, status_code=400)
result = recommend(query)
return JSONResponse(content=result, status_code=200)
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
# Create a Gradio interface
demo = gr.Interface(
fn=recommend,
inputs=gr.Textbox(
label="Enter Job Description",
lines=4,
placeholder="Paste a job description here..."
),
outputs=gr.JSON(label="Recommended Assessments"),
title="SHL Assessment Recommender",
description="Paste a job description to get the most relevant SHL assessments.",
)
# This is the pattern for Gradio 5.x
app = gr.mount_gradio_app(app, demo, path="/")
# Entry point
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
#app |