File size: 4,229 Bytes
d93bcf7
 
 
 
306d267
b0d04b3
306d267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d93bcf7
 
 
 
306d267
d93bcf7
306d267
d93bcf7
 
3ed9ca7
 
 
 
306d267
d93bcf7
 
 
 
 
 
306d267
 
d93bcf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08dabce
d93bcf7
 
 
 
 
 
 
 
 
 
 
 
08dabce
d93bcf7
 
 
306d267
 
 
 
 
 
d93bcf7
306d267
 
 
 
 
 
 
 
 
 
 
d93bcf7
 
 
 
 
 
 
306d267
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import pandas as pd
import gradio as gr
from retriever import get_relevant_passages
from reranker import rerank
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from gradio.routes import mount_gradio_app
import json

# Define FastAPI app
app = FastAPI()

# Enable CORS for Spaces
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Load and clean CSV
def clean_df(df):
    df = df.copy()
    second_col = df.iloc[:, 2].astype(str)
    if second_col.str.contains('http').any() or second_col.str.contains('www').any():
        df["url"] = second_col
    else:
        df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
    df["remote_support"] = df.iloc[:, 3].map(lambda x: "Yes" if x == "T" else "No")
    df["adaptive_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
    df["test_type"] = df.iloc[:, 5].apply(lambda x: eval(x) if isinstance(x, str) else x)
    df["description"] = df.iloc[:, 6]
    df["duration"] = pd.to_numeric(df.iloc[:, 9].astype(str).str.extract(r'(\d+)')[0], errors='coerce')
    return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]

try:
    df = pd.read_csv("assesments.csv", encoding='utf-8')
    df_clean = clean_df(df)
except Exception as e:
    print(f"Error loading CSV: {e}")
    df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support", "description", "duration", "test_type"])

def validate_and_fix_urls(candidates):
    for candidate in candidates:
        if not isinstance(candidate, dict):
            continue
        if 'url' not in candidate or not candidate['url']:
            candidate['url'] = 'https://www.shl.com/missing-url'
            continue
        url = str(candidate['url'])
        if url.isdigit():
            candidate['url'] = f"https://www.shl.com/{url}"
            continue
        if not url.startswith(('http://', 'https://')):
            candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}"
    return candidates

def recommend(query):
    if not query.strip():
        return {"error": "Please enter a job description"}
    try:
        top_k_df = get_relevant_passages(query, df_clean, top_k=20)
        if top_k_df.empty:
            return {"error": "No matching assessments found"}
        top_k_df['test_type'] = top_k_df['test_type'].apply(
            lambda x: x if isinstance(x, list) else 
                     (eval(x) if isinstance(x, str) and x.startswith('[') else [str(x)])
        )
        top_k_df['duration'] = top_k_df['duration'].fillna(-1).astype(int)
        top_k_df.loc[top_k_df['duration'] == -1, 'duration'] = None
        candidates = top_k_df.to_dict(orient="records")
        candidates = validate_and_fix_urls(candidates)
        result = rerank(query, candidates)
        if 'recommended_assessments' in result:
            result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments'])
        return result
    except Exception as e:
        import traceback
        return {"error": f"Error: {str(e)}", "trace": traceback.format_exc()}

# --- API Endpoints ---
@app.get("/health")
async def health_check():
    return JSONResponse(status_code=200, content={"status": "healthy"})

@app.post("/recommend")
async def recommend_api(request: Request):
    body = await request.json()
    query = body.get("query", "").strip()
    if not query:
        return JSONResponse(status_code=400, content={"error": "Missing 'query' in request body"})
    result = recommend(query)
    return JSONResponse(status_code=200, content=result)

# --- Gradio UI ---
gradio_iface = gr.Interface(
    fn=recommend,
    inputs=gr.Textbox(label="Enter Job Description", lines=4),
    outputs="json",
    title="SHL Assessment Recommender",
    description="Paste a job description to get the most relevant SHL assessments."
)

# Mount Gradio app at root
app = mount_gradio_app(app, gradio_iface, path="/")

# Hugging Face Spaces runs `app` object, so no need for __main__