Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import queue | |
import torch | |
import time | |
import threading | |
import os | |
import urllib.request | |
import torchaudio | |
from scipy.spatial.distance import cosine | |
import json | |
import io | |
import wave | |
# Simplified configuration parameters | |
SILENCE_THRESHS = [0, 0.4] | |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3" | |
FINAL_BEAM_SIZE = 5 | |
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en" | |
REALTIME_BEAM_SIZE = 5 | |
TRANSCRIPTION_LANGUAGE = "en" | |
SILERO_SENSITIVITY = 0.4 | |
WEBRTC_SENSITIVITY = 3 | |
MIN_LENGTH_OF_RECORDING = 0.7 | |
PRE_RECORDING_BUFFER_DURATION = 0.35 | |
# Speaker change detection parameters | |
DEFAULT_CHANGE_THRESHOLD = 0.7 | |
EMBEDDING_HISTORY_SIZE = 5 | |
MIN_SEGMENT_DURATION = 1.0 | |
DEFAULT_MAX_SPEAKERS = 4 | |
ABSOLUTE_MAX_SPEAKERS = 10 | |
# Global variables | |
FAST_SENTENCE_END = True | |
SAMPLE_RATE = 16000 | |
BUFFER_SIZE = 512 | |
CHANNELS = 1 | |
# Speaker colors | |
SPEAKER_COLORS = [ | |
"#FFFF00", # Yellow | |
"#FF0000", # Red | |
"#00FF00", # Green | |
"#00FFFF", # Cyan | |
"#FF00FF", # Magenta | |
"#0000FF", # Blue | |
"#FF8000", # Orange | |
"#00FF80", # Spring Green | |
"#8000FF", # Purple | |
"#FFFFFF", # White | |
] | |
SPEAKER_COLOR_NAMES = [ | |
"Yellow", "Red", "Green", "Cyan", "Magenta", | |
"Blue", "Orange", "Spring Green", "Purple", "White" | |
] | |
class SpeechBrainEncoder: | |
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings""" | |
def __init__(self, device="cpu"): | |
self.device = device | |
self.model = None | |
self.embedding_dim = 192 | |
self.model_loaded = False | |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain") | |
os.makedirs(self.cache_dir, exist_ok=True) | |
def load_model(self): | |
"""Load the ECAPA-TDNN model""" | |
try: | |
from speechbrain.pretrained import EncoderClassifier | |
self.model = EncoderClassifier.from_hparams( | |
source="speechbrain/spkrec-ecapa-voxceleb", | |
savedir=self.cache_dir, | |
run_opts={"device": self.device} | |
) | |
self.model_loaded = True | |
print("ECAPA-TDNN model loaded successfully!") | |
return True | |
except Exception as e: | |
print(f"SpeechBrain not available: {e}") | |
return False | |
def embed_utterance(self, audio, sr=16000): | |
"""Extract speaker embedding from audio""" | |
if not self.model_loaded: | |
raise ValueError("Model not loaded. Call load_model() first.") | |
try: | |
if isinstance(audio, np.ndarray): | |
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0) | |
else: | |
waveform = audio.unsqueeze(0) | |
if sr != 16000: | |
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) | |
with torch.no_grad(): | |
embedding = self.model.encode_batch(waveform) | |
return embedding.squeeze().cpu().numpy() | |
except Exception as e: | |
print(f"Error extracting embedding: {e}") | |
return np.zeros(self.embedding_dim) | |
class AudioProcessor: | |
"""Processes audio data to extract speaker embeddings""" | |
def __init__(self, encoder): | |
self.encoder = encoder | |
def extract_embedding(self, audio_data, sample_rate=16000): | |
try: | |
# Ensure audio is float32 and normalized | |
if audio_data.dtype == np.int16: | |
float_audio = audio_data.astype(np.float32) / 32768.0 | |
else: | |
float_audio = audio_data.astype(np.float32) | |
# Normalize if needed | |
if np.abs(float_audio).max() > 1.0: | |
float_audio = float_audio / np.abs(float_audio).max() | |
embedding = self.encoder.embed_utterance(float_audio, sample_rate) | |
return embedding | |
except Exception as e: | |
print(f"Embedding extraction error: {e}") | |
return np.zeros(self.encoder.embedding_dim) | |
class SpeakerChangeDetector: | |
"""Speaker change detector that supports a configurable number of speakers""" | |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS): | |
self.embedding_dim = embedding_dim | |
self.change_threshold = change_threshold | |
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) | |
self.current_speaker = 0 | |
self.previous_embeddings = [] | |
self.last_change_time = time.time() | |
self.mean_embeddings = [None] * self.max_speakers | |
self.speaker_embeddings = [[] for _ in range(self.max_speakers)] | |
self.last_similarity = 0.0 | |
self.active_speakers = set([0]) | |
def set_max_speakers(self, max_speakers): | |
"""Update the maximum number of speakers""" | |
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) | |
if new_max < self.max_speakers: | |
for speaker_id in list(self.active_speakers): | |
if speaker_id >= new_max: | |
self.active_speakers.discard(speaker_id) | |
if self.current_speaker >= new_max: | |
self.current_speaker = 0 | |
if new_max > self.max_speakers: | |
self.mean_embeddings.extend([None] * (new_max - self.max_speakers)) | |
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)]) | |
else: | |
self.mean_embeddings = self.mean_embeddings[:new_max] | |
self.speaker_embeddings = self.speaker_embeddings[:new_max] | |
self.max_speakers = new_max | |
def set_change_threshold(self, threshold): | |
"""Update the threshold for detecting speaker changes""" | |
self.change_threshold = max(0.1, min(threshold, 0.99)) | |
def add_embedding(self, embedding, timestamp=None): | |
"""Add a new embedding and check if there's a speaker change""" | |
current_time = timestamp or time.time() | |
if not self.previous_embeddings: | |
self.previous_embeddings.append(embedding) | |
self.speaker_embeddings[self.current_speaker].append(embedding) | |
if self.mean_embeddings[self.current_speaker] is None: | |
self.mean_embeddings[self.current_speaker] = embedding.copy() | |
return self.current_speaker, 1.0 | |
current_mean = self.mean_embeddings[self.current_speaker] | |
if current_mean is not None: | |
similarity = 1.0 - cosine(embedding, current_mean) | |
else: | |
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1]) | |
self.last_similarity = similarity | |
time_since_last_change = current_time - self.last_change_time | |
is_speaker_change = False | |
if time_since_last_change >= MIN_SEGMENT_DURATION: | |
if similarity < self.change_threshold: | |
best_speaker = self.current_speaker | |
best_similarity = similarity | |
for speaker_id in range(self.max_speakers): | |
if speaker_id == self.current_speaker: | |
continue | |
speaker_mean = self.mean_embeddings[speaker_id] | |
if speaker_mean is not None: | |
speaker_similarity = 1.0 - cosine(embedding, speaker_mean) | |
if speaker_similarity > best_similarity: | |
best_similarity = speaker_similarity | |
best_speaker = speaker_id | |
if best_speaker != self.current_speaker: | |
is_speaker_change = True | |
self.current_speaker = best_speaker | |
elif len(self.active_speakers) < self.max_speakers: | |
for new_id in range(self.max_speakers): | |
if new_id not in self.active_speakers: | |
is_speaker_change = True | |
self.current_speaker = new_id | |
self.active_speakers.add(new_id) | |
break | |
if is_speaker_change: | |
self.last_change_time = current_time | |
self.previous_embeddings.append(embedding) | |
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE: | |
self.previous_embeddings.pop(0) | |
self.speaker_embeddings[self.current_speaker].append(embedding) | |
self.active_speakers.add(self.current_speaker) | |
if len(self.speaker_embeddings[self.current_speaker]) > 30: | |
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:] | |
if self.speaker_embeddings[self.current_speaker]: | |
self.mean_embeddings[self.current_speaker] = np.mean( | |
self.speaker_embeddings[self.current_speaker], axis=0 | |
) | |
return self.current_speaker, similarity | |
def get_color_for_speaker(self, speaker_id): | |
"""Return color for speaker ID""" | |
if 0 <= speaker_id < len(SPEAKER_COLORS): | |
return SPEAKER_COLORS[speaker_id] | |
return "#FFFFFF" | |
def get_status_info(self): | |
"""Return status information about the speaker change detector""" | |
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)] | |
return { | |
"current_speaker": self.current_speaker, | |
"speaker_counts": speaker_counts, | |
"active_speakers": len(self.active_speakers), | |
"max_speakers": self.max_speakers, | |
"last_similarity": self.last_similarity, | |
"threshold": self.change_threshold | |
} | |
class GradioSpeakerDiarization: | |
def __init__(self): | |
self.encoder = None | |
self.audio_processor = None | |
self.speaker_detector = None | |
self.full_sentences = [] | |
self.sentence_speakers = [] | |
self.is_initialized = False | |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD | |
self.max_speakers = DEFAULT_MAX_SPEAKERS | |
def initialize_models(self): | |
"""Initialize the speaker encoder model""" | |
try: | |
device_str = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device_str}") | |
# Load SpeechBrain encoder | |
self.encoder = SpeechBrainEncoder(device=device_str) | |
success = self.encoder.load_model() | |
if success: | |
self.audio_processor = AudioProcessor(self.encoder) | |
self.speaker_detector = SpeakerChangeDetector( | |
embedding_dim=self.encoder.embedding_dim, | |
change_threshold=self.change_threshold, | |
max_speakers=self.max_speakers | |
) | |
self.is_initialized = True | |
return True | |
else: | |
return False | |
except Exception as e: | |
print(f"Model initialization error: {e}") | |
return False | |
def transcribe_audio(self, audio_input): | |
"""Process audio input and perform transcription with speaker diarization""" | |
if not self.is_initialized: | |
return "β Please initialize the system first!", self.get_formatted_conversation(), self.get_status_info() | |
if audio_input is None: | |
return "No audio received", self.get_formatted_conversation(), self.get_status_info() | |
try: | |
# Handle different audio input formats | |
if isinstance(audio_input, tuple): | |
sample_rate, audio_data = audio_input | |
else: | |
# Assume it's a file path | |
import librosa | |
audio_data, sample_rate = librosa.load(audio_input, sr=16000) | |
# Ensure audio is in the right format | |
if len(audio_data.shape) > 1: | |
audio_data = audio_data.mean(axis=1) # Convert to mono | |
# Perform simple transcription (placeholder - you'd want to integrate with Whisper or similar) | |
# For now, we'll just do speaker diarization | |
transcription = f"Audio segment {len(self.full_sentences) + 1} (duration: {len(audio_data)/sample_rate:.1f}s)" | |
# Extract speaker embedding | |
speaker_embedding = self.audio_processor.extract_embedding(audio_data, sample_rate) | |
# Store sentence and embedding | |
self.full_sentences.append((transcription, speaker_embedding)) | |
# Detect speaker changes | |
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding) | |
self.sentence_speakers.append(speaker_id) | |
status_msg = f"β Processed audio segment. Detected as Speaker {speaker_id + 1} (similarity: {similarity:.3f})" | |
return status_msg, self.get_formatted_conversation(), self.get_status_info() | |
except Exception as e: | |
error_msg = f"β Error processing audio: {str(e)}" | |
return error_msg, self.get_formatted_conversation(), self.get_status_info() | |
def clear_conversation(self): | |
"""Clear all conversation data""" | |
self.full_sentences = [] | |
self.sentence_speakers = [] | |
if self.speaker_detector: | |
self.speaker_detector = SpeakerChangeDetector( | |
embedding_dim=self.encoder.embedding_dim, | |
change_threshold=self.change_threshold, | |
max_speakers=self.max_speakers | |
) | |
return "Conversation cleared!", self.get_formatted_conversation(), self.get_status_info() | |
def update_settings(self, threshold, max_speakers): | |
"""Update speaker detection settings""" | |
self.change_threshold = threshold | |
self.max_speakers = max_speakers | |
if self.speaker_detector: | |
self.speaker_detector.set_change_threshold(threshold) | |
self.speaker_detector.set_max_speakers(max_speakers) | |
status_msg = f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}" | |
return status_msg, self.get_formatted_conversation(), self.get_status_info() | |
def get_formatted_conversation(self): | |
"""Get the formatted conversation with speaker colors""" | |
try: | |
if not self.full_sentences: | |
return "No audio processed yet. Upload an audio file or record using the microphone." | |
sentences_with_style = [] | |
for i, sentence in enumerate(self.full_sentences): | |
sentence_text, _ = sentence | |
if i >= len(self.sentence_speakers): | |
color = "#FFFFFF" | |
speaker_name = "Unknown" | |
else: | |
speaker_id = self.sentence_speakers[i] | |
color = self.speaker_detector.get_color_for_speaker(speaker_id) | |
speaker_name = f"Speaker {speaker_id + 1}" | |
sentences_with_style.append( | |
f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>') | |
return "<br><br>".join(sentences_with_style) | |
except Exception as e: | |
return f"Error formatting conversation: {e}" | |
def get_status_info(self): | |
"""Get current status information""" | |
if not self.speaker_detector: | |
return "Speaker detector not initialized" | |
try: | |
status = self.speaker_detector.get_status_info() | |
status_lines = [ | |
f"**Current Speaker:** {status['current_speaker'] + 1}", | |
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}", | |
f"**Last Similarity:** {status['last_similarity']:.3f}", | |
f"**Change Threshold:** {status['threshold']:.2f}", | |
f"**Total Segments:** {len(self.full_sentences)}", | |
"", | |
"**Speaker Segment Counts:**" | |
] | |
for i in range(status['max_speakers']): | |
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}" | |
status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}") | |
return "\n".join(status_lines) | |
except Exception as e: | |
return f"Error getting status: {e}" | |
# Global instance | |
diarization_system = GradioSpeakerDiarization() | |
def initialize_system(): | |
"""Initialize the diarization system""" | |
success = diarization_system.initialize_models() | |
if success: | |
return "β System initialized successfully! Models loaded.", "", "" | |
else: | |
return "β Failed to initialize system. Please check the logs.", "", "" | |
def process_audio(audio): | |
"""Process uploaded or recorded audio""" | |
return diarization_system.transcribe_audio(audio) | |
def clear_conversation(): | |
"""Clear the conversation""" | |
return diarization_system.clear_conversation() | |
def update_settings(threshold, max_speakers): | |
"""Update system settings""" | |
return diarization_system.update_settings(threshold, max_speakers) | |
# Create Gradio interface | |
def create_interface(): | |
with gr.Blocks(title="Speaker Diarization", theme=gr.themes.Soft()) as app: | |
gr.Markdown("# π€ Audio Speaker Diarization") | |
gr.Markdown("Upload audio files or record directly to identify different speakers using voice characteristics.") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# Initialize button | |
with gr.Row(): | |
init_btn = gr.Button("π§ Initialize System", variant="primary", size="lg") | |
# Audio input options | |
gr.Markdown("### π Audio Input") | |
with gr.Tab("Upload Audio File"): | |
audio_file = gr.Audio( | |
label="Upload Audio File", | |
type="filepath", | |
sources=["upload"] | |
) | |
process_file_btn = gr.Button("Process Audio File", variant="secondary") | |
with gr.Tab("Record Audio"): | |
audio_mic = gr.Audio( | |
label="Record Audio", | |
type="numpy", | |
sources=["microphone"] | |
) | |
process_mic_btn = gr.Button("Process Recording", variant="secondary") | |
# Results display | |
status_output = gr.Textbox( | |
label="Status", | |
value="Click 'Initialize System' to start...", | |
lines=2, | |
interactive=False | |
) | |
conversation_output = gr.HTML( | |
value="<i>System not initialized...</i>", | |
label="Speaker Analysis Results" | |
) | |
# Control buttons | |
with gr.Row(): | |
clear_btn = gr.Button("ποΈ Clear Results", variant="stop") | |
with gr.Column(scale=1): | |
# Settings panel | |
gr.Markdown("## βοΈ Settings") | |
threshold_slider = gr.Slider( | |
minimum=0.1, | |
maximum=0.95, | |
step=0.05, | |
value=DEFAULT_CHANGE_THRESHOLD, | |
label="Speaker Change Sensitivity", | |
info="Lower = more sensitive to speaker changes" | |
) | |
max_speakers_slider = gr.Slider( | |
minimum=2, | |
maximum=ABSOLUTE_MAX_SPEAKERS, | |
step=1, | |
value=DEFAULT_MAX_SPEAKERS, | |
label="Maximum Number of Speakers" | |
) | |
update_settings_btn = gr.Button("Update Settings", variant="secondary") | |
# System status | |
system_status = gr.Textbox( | |
label="System Status", | |
value="System not initialized", | |
lines=12, | |
interactive=False | |
) | |
# Speaker color legend | |
gr.Markdown("## π¨ Speaker Colors") | |
color_info = [] | |
for i, (color, name) in enumerate(zip(SPEAKER_COLORS[:DEFAULT_MAX_SPEAKERS], SPEAKER_COLOR_NAMES[:DEFAULT_MAX_SPEAKERS])): | |
color_info.append(f'<span style="color:{color};">β</span> Speaker {i+1} ({name})') | |
gr.HTML("<br>".join(color_info)) | |
# Event handlers | |
init_btn.click( | |
initialize_system, | |
outputs=[status_output, conversation_output, system_status] | |
) | |
process_file_btn.click( | |
process_audio, | |
inputs=[audio_file], | |
outputs=[status_output, conversation_output, system_status] | |
) | |
process_mic_btn.click( | |
process_audio, | |
inputs=[audio_mic], | |
outputs=[status_output, conversation_output, system_status] | |
) | |
clear_btn.click( | |
clear_conversation, | |
outputs=[status_output, conversation_output, system_status] | |
) | |
update_settings_btn.click( | |
update_settings, | |
inputs=[threshold_slider, max_speakers_slider], | |
outputs=[status_output, conversation_output, system_status] | |
) | |
return app | |
if __name__ == "__main__": | |
app = create_interface() | |
app.launch( | |
server_name="0.0.0.0", | |
server_port=7860 | |
) | |